Spaces:
Running
on
A10G
Running
on
A10G
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .update import BasicUpdateBlock, SmallUpdateBlock | |
from .extractor import BasicEncoder, SmallEncoder | |
from .corr import CorrBlock, AlternateCorrBlock | |
from .utils.utils import bilinear_sampler, coords_grid, upflow8 | |
try: | |
autocast = torch.cuda.amp.autocast | |
except: | |
# dummy autocast for PyTorch < 1.6 | |
class autocast: | |
def __init__(self, enabled): | |
pass | |
def __enter__(self): | |
pass | |
def __exit__(self, *args): | |
pass | |
class RAFT(nn.Module): | |
def __init__(self, args): | |
super(RAFT, self).__init__() | |
self.args = args | |
if args.small: | |
self.hidden_dim = hdim = 96 | |
self.context_dim = cdim = 64 | |
args.corr_levels = 4 | |
args.corr_radius = 3 | |
else: | |
self.hidden_dim = hdim = 128 | |
self.context_dim = cdim = 128 | |
args.corr_levels = 4 | |
args.corr_radius = 4 | |
if 'dropout' not in args._get_kwargs(): | |
args.dropout = 0 | |
if 'alternate_corr' not in args._get_kwargs(): | |
args.alternate_corr = False | |
# feature network, context network, and update block | |
if args.small: | |
self.fnet = SmallEncoder(output_dim=128, norm_fn='instance', dropout=args.dropout) | |
self.cnet = SmallEncoder(output_dim=hdim+cdim, norm_fn='none', dropout=args.dropout) | |
self.update_block = SmallUpdateBlock(self.args, hidden_dim=hdim) | |
else: | |
self.fnet = BasicEncoder(output_dim=256, norm_fn='instance', dropout=args.dropout) | |
self.cnet = BasicEncoder(output_dim=hdim+cdim, norm_fn='batch', dropout=args.dropout) | |
self.update_block = BasicUpdateBlock(self.args, hidden_dim=hdim) | |
def freeze_bn(self): | |
for m in self.modules(): | |
if isinstance(m, nn.BatchNorm2d): | |
m.eval() | |
def initialize_flow(self, img): | |
""" Flow is represented as difference between two coordinate grids flow = coords1 - coords0""" | |
N, C, H, W = img.shape | |
coords0 = coords_grid(N, H//8, W//8).to(img.device) | |
coords1 = coords_grid(N, H//8, W//8).to(img.device) | |
# optical flow computed as difference: flow = coords1 - coords0 | |
return coords0, coords1 | |
def upsample_flow(self, flow, mask): | |
""" Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """ | |
N, _, H, W = flow.shape | |
mask = mask.view(N, 1, 9, 8, 8, H, W) | |
mask = torch.softmax(mask, dim=2) | |
up_flow = F.unfold(8 * flow, [3,3], padding=1) | |
up_flow = up_flow.view(N, 2, 9, 1, 1, H, W) | |
up_flow = torch.sum(mask * up_flow, dim=2) | |
up_flow = up_flow.permute(0, 1, 4, 2, 5, 3) | |
return up_flow.reshape(N, 2, 8*H, 8*W) | |
def forward(self, image1, image2, iters=12, flow_init=None, test_mode=True): | |
""" Estimate optical flow between pair of frames """ | |
# image1 = 2 * (image1 / 255.0) - 1.0 | |
# image2 = 2 * (image2 / 255.0) - 1.0 | |
image1 = image1.contiguous() | |
image2 = image2.contiguous() | |
hdim = self.hidden_dim | |
cdim = self.context_dim | |
# run the feature network | |
with autocast(enabled=self.args.mixed_precision): | |
fmap1, fmap2 = self.fnet([image1, image2]) | |
fmap1 = fmap1.float() | |
fmap2 = fmap2.float() | |
if self.args.alternate_corr: | |
corr_fn = AlternateCorrBlock(fmap1, fmap2, radius=self.args.corr_radius) | |
else: | |
corr_fn = CorrBlock(fmap1, fmap2, radius=self.args.corr_radius) | |
# run the context network | |
with autocast(enabled=self.args.mixed_precision): | |
cnet = self.cnet(image1) | |
net, inp = torch.split(cnet, [hdim, cdim], dim=1) | |
net = torch.tanh(net) | |
inp = torch.relu(inp) | |
coords0, coords1 = self.initialize_flow(image1) | |
if flow_init is not None: | |
coords1 = coords1 + flow_init | |
flow_predictions = [] | |
for itr in range(iters): | |
coords1 = coords1.detach() | |
corr = corr_fn(coords1) # index correlation volume | |
flow = coords1 - coords0 | |
with autocast(enabled=self.args.mixed_precision): | |
net, up_mask, delta_flow = self.update_block(net, inp, corr, flow) | |
# F(t+1) = F(t) + \Delta(t) | |
coords1 = coords1 + delta_flow | |
# upsample predictions | |
if up_mask is None: | |
flow_up = upflow8(coords1 - coords0) | |
else: | |
flow_up = self.upsample_flow(coords1 - coords0, up_mask) | |
flow_predictions.append(flow_up) | |
if test_mode: | |
return coords1 - coords0, flow_up | |
return flow_predictions | |