Spaces:
Running
on
A10G
Running
on
A10G
import math | |
from math import sqrt | |
from typing import List, Optional, Tuple | |
import torch | |
def normalize_kernel2d(input: torch.Tensor) -> torch.Tensor: | |
r"""Normalize both derivative and smoothing kernel.""" | |
if len(input.size()) < 2: | |
raise TypeError(f"input should be at least 2D tensor. Got {input.size()}") | |
norm: torch.Tensor = input.abs().sum(dim=-1).sum(dim=-1) | |
return input / (norm.unsqueeze(-1).unsqueeze(-1)) | |
def gaussian(window_size: int, sigma: float) -> torch.Tensor: | |
device, dtype = None, None | |
if isinstance(sigma, torch.Tensor): | |
device, dtype = sigma.device, sigma.dtype | |
x = torch.arange(window_size, device=device, dtype=dtype) - window_size // 2 | |
if window_size % 2 == 0: | |
x = x + 0.5 | |
gauss = torch.exp((-x.pow(2.0) / (2 * sigma**2)).float()) | |
return gauss / gauss.sum() | |
def gaussian_discrete_erf(window_size: int, sigma) -> torch.Tensor: | |
r"""Discrete Gaussian by interpolating the error function. | |
Adapted from: | |
https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py | |
""" | |
device = sigma.device if isinstance(sigma, torch.Tensor) else None | |
sigma = torch.as_tensor(sigma, dtype=torch.float, device=device) | |
x = torch.arange(window_size).float() - window_size // 2 | |
t = 0.70710678 / torch.abs(sigma) | |
gauss = 0.5 * ((t * (x + 0.5)).erf() - (t * (x - 0.5)).erf()) | |
gauss = gauss.clamp(min=0) | |
return gauss / gauss.sum() | |
def _modified_bessel_0(x: torch.Tensor) -> torch.Tensor: | |
r"""Adapted from: | |
https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py | |
""" | |
if torch.abs(x) < 3.75: | |
y = (x / 3.75) * (x / 3.75) | |
return 1.0 + y * ( | |
3.5156229 + y * (3.0899424 + y * (1.2067492 + y * (0.2659732 + y * (0.360768e-1 + y * 0.45813e-2)))) | |
) | |
ax = torch.abs(x) | |
y = 3.75 / ax | |
ans = 0.916281e-2 + y * (-0.2057706e-1 + y * (0.2635537e-1 + y * (-0.1647633e-1 + y * 0.392377e-2))) | |
coef = 0.39894228 + y * (0.1328592e-1 + y * (0.225319e-2 + y * (-0.157565e-2 + y * ans))) | |
return (torch.exp(ax) / torch.sqrt(ax)) * coef | |
def _modified_bessel_1(x: torch.Tensor) -> torch.Tensor: | |
r"""adapted from: | |
https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py | |
""" | |
if torch.abs(x) < 3.75: | |
y = (x / 3.75) * (x / 3.75) | |
ans = 0.51498869 + y * (0.15084934 + y * (0.2658733e-1 + y * (0.301532e-2 + y * 0.32411e-3))) | |
return torch.abs(x) * (0.5 + y * (0.87890594 + y * ans)) | |
ax = torch.abs(x) | |
y = 3.75 / ax | |
ans = 0.2282967e-1 + y * (-0.2895312e-1 + y * (0.1787654e-1 - y * 0.420059e-2)) | |
ans = 0.39894228 + y * (-0.3988024e-1 + y * (-0.362018e-2 + y * (0.163801e-2 + y * (-0.1031555e-1 + y * ans)))) | |
ans = ans * torch.exp(ax) / torch.sqrt(ax) | |
return -ans if x < 0.0 else ans | |
def _modified_bessel_i(n: int, x: torch.Tensor) -> torch.Tensor: | |
r"""adapted from: | |
https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py | |
""" | |
if n < 2: | |
raise ValueError("n must be greater than 1.") | |
if x == 0.0: | |
return x | |
device = x.device | |
tox = 2.0 / torch.abs(x) | |
ans = torch.tensor(0.0, device=device) | |
bip = torch.tensor(0.0, device=device) | |
bi = torch.tensor(1.0, device=device) | |
m = int(2 * (n + int(sqrt(40.0 * n)))) | |
for j in range(m, 0, -1): | |
bim = bip + float(j) * tox * bi | |
bip = bi | |
bi = bim | |
if abs(bi) > 1.0e10: | |
ans = ans * 1.0e-10 | |
bi = bi * 1.0e-10 | |
bip = bip * 1.0e-10 | |
if j == n: | |
ans = bip | |
ans = ans * _modified_bessel_0(x) / bi | |
return -ans if x < 0.0 and (n % 2) == 1 else ans | |
def gaussian_discrete(window_size, sigma) -> torch.Tensor: | |
r"""Discrete Gaussian kernel based on the modified Bessel functions. | |
Adapted from: | |
https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py | |
""" | |
device = sigma.device if isinstance(sigma, torch.Tensor) else None | |
sigma = torch.as_tensor(sigma, dtype=torch.float, device=device) | |
sigma2 = sigma * sigma | |
tail = int(window_size // 2) | |
out_pos: List[Optional[torch.Tensor]] = [None] * (tail + 1) | |
out_pos[0] = _modified_bessel_0(sigma2) | |
out_pos[1] = _modified_bessel_1(sigma2) | |
for k in range(2, len(out_pos)): | |
out_pos[k] = _modified_bessel_i(k, sigma2) | |
out = out_pos[:0:-1] | |
out.extend(out_pos) | |
out = torch.stack(out) * torch.exp(sigma2) # type: ignore | |
return out / out.sum() # type: ignore | |
def laplacian_1d(window_size) -> torch.Tensor: | |
r"""One could also use the Laplacian of Gaussian formula to design the filter.""" | |
filter_1d = torch.ones(window_size) | |
filter_1d[window_size // 2] = 1 - window_size | |
laplacian_1d: torch.Tensor = filter_1d | |
return laplacian_1d | |
def get_box_kernel2d(kernel_size: Tuple[int, int]) -> torch.Tensor: | |
r"""Utility function that returns a box filter.""" | |
kx: float = float(kernel_size[0]) | |
ky: float = float(kernel_size[1]) | |
scale: torch.Tensor = torch.tensor(1.0) / torch.tensor([kx * ky]) | |
tmp_kernel: torch.Tensor = torch.ones(1, kernel_size[0], kernel_size[1]) | |
return scale.to(tmp_kernel.dtype) * tmp_kernel | |
def get_binary_kernel2d(window_size: Tuple[int, int]) -> torch.Tensor: | |
r"""Create a binary kernel to extract the patches. | |
If the window size is HxW will create a (H*W)xHxW kernel. | |
""" | |
window_range: int = window_size[0] * window_size[1] | |
kernel: torch.Tensor = torch.zeros(window_range, window_range) | |
for i in range(window_range): | |
kernel[i, i] += 1.0 | |
return kernel.view(window_range, 1, window_size[0], window_size[1]) | |
def get_sobel_kernel_3x3() -> torch.Tensor: | |
"""Utility function that returns a sobel kernel of 3x3.""" | |
return torch.tensor([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]]) | |
def get_sobel_kernel_5x5_2nd_order() -> torch.Tensor: | |
"""Utility function that returns a 2nd order sobel kernel of 5x5.""" | |
return torch.tensor( | |
[ | |
[-1.0, 0.0, 2.0, 0.0, -1.0], | |
[-4.0, 0.0, 8.0, 0.0, -4.0], | |
[-6.0, 0.0, 12.0, 0.0, -6.0], | |
[-4.0, 0.0, 8.0, 0.0, -4.0], | |
[-1.0, 0.0, 2.0, 0.0, -1.0], | |
] | |
) | |
def _get_sobel_kernel_5x5_2nd_order_xy() -> torch.Tensor: | |
"""Utility function that returns a 2nd order sobel kernel of 5x5.""" | |
return torch.tensor( | |
[ | |
[-1.0, -2.0, 0.0, 2.0, 1.0], | |
[-2.0, -4.0, 0.0, 4.0, 2.0], | |
[0.0, 0.0, 0.0, 0.0, 0.0], | |
[2.0, 4.0, 0.0, -4.0, -2.0], | |
[1.0, 2.0, 0.0, -2.0, -1.0], | |
] | |
) | |
def get_diff_kernel_3x3() -> torch.Tensor: | |
"""Utility function that returns a first order derivative kernel of 3x3.""" | |
return torch.tensor([[-0.0, 0.0, 0.0], [-1.0, 0.0, 1.0], [-0.0, 0.0, 0.0]]) | |
def get_diff_kernel3d(device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor: | |
"""Utility function that returns a first order derivative kernel of 3x3x3.""" | |
kernel: torch.Tensor = torch.tensor( | |
[ | |
[ | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
[[0.0, 0.0, 0.0], [-0.5, 0.0, 0.5], [0.0, 0.0, 0.0]], | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
], | |
[ | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
[[0.0, -0.5, 0.0], [0.0, 0.0, 0.0], [0.0, 0.5, 0.0]], | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
], | |
[ | |
[[0.0, 0.0, 0.0], [0.0, -0.5, 0.0], [0.0, 0.0, 0.0]], | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
[[0.0, 0.0, 0.0], [0.0, 0.5, 0.0], [0.0, 0.0, 0.0]], | |
], | |
], | |
device=device, | |
dtype=dtype, | |
) | |
return kernel.unsqueeze(1) | |
def get_diff_kernel3d_2nd_order(device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor: | |
"""Utility function that returns a first order derivative kernel of 3x3x3.""" | |
kernel: torch.Tensor = torch.tensor( | |
[ | |
[ | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
[[0.0, 0.0, 0.0], [1.0, -2.0, 1.0], [0.0, 0.0, 0.0]], | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
], | |
[ | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
[[0.0, 1.0, 0.0], [0.0, -2.0, 0.0], [0.0, 1.0, 0.0]], | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
], | |
[ | |
[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]], | |
[[0.0, 0.0, 0.0], [0.0, -2.0, 0.0], [0.0, 0.0, 0.0]], | |
[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]], | |
], | |
[ | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
[[1.0, 0.0, -1.0], [0.0, 0.0, 0.0], [-1.0, 0.0, 1.0]], | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
], | |
[ | |
[[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, -1.0, 0.0]], | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
[[0.0, -1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]], | |
], | |
[ | |
[[0.0, 0.0, 0.0], [1.0, 0.0, -1.0], [0.0, 0.0, 0.0]], | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
[[0.0, 0.0, 0.0], [-1.0, 0.0, 1.0], [0.0, 0.0, 0.0]], | |
], | |
], | |
device=device, | |
dtype=dtype, | |
) | |
return kernel.unsqueeze(1) | |
def get_sobel_kernel2d() -> torch.Tensor: | |
kernel_x: torch.Tensor = get_sobel_kernel_3x3() | |
kernel_y: torch.Tensor = kernel_x.transpose(0, 1) | |
return torch.stack([kernel_x, kernel_y]) | |
def get_diff_kernel2d() -> torch.Tensor: | |
kernel_x: torch.Tensor = get_diff_kernel_3x3() | |
kernel_y: torch.Tensor = kernel_x.transpose(0, 1) | |
return torch.stack([kernel_x, kernel_y]) | |
def get_sobel_kernel2d_2nd_order() -> torch.Tensor: | |
gxx: torch.Tensor = get_sobel_kernel_5x5_2nd_order() | |
gyy: torch.Tensor = gxx.transpose(0, 1) | |
gxy: torch.Tensor = _get_sobel_kernel_5x5_2nd_order_xy() | |
return torch.stack([gxx, gxy, gyy]) | |
def get_diff_kernel2d_2nd_order() -> torch.Tensor: | |
gxx: torch.Tensor = torch.tensor([[0.0, 0.0, 0.0], [1.0, -2.0, 1.0], [0.0, 0.0, 0.0]]) | |
gyy: torch.Tensor = gxx.transpose(0, 1) | |
gxy: torch.Tensor = torch.tensor([[-1.0, 0.0, 1.0], [0.0, 0.0, 0.0], [1.0, 0.0, -1.0]]) | |
return torch.stack([gxx, gxy, gyy]) | |
def get_spatial_gradient_kernel2d(mode: str, order: int) -> torch.Tensor: | |
r"""Function that returns kernel for 1st or 2nd order image gradients, using one of the following operators: | |
sobel, diff. | |
""" | |
if mode not in ['sobel', 'diff']: | |
raise TypeError( | |
"mode should be either sobel\ | |
or diff. Got {}".format( | |
mode | |
) | |
) | |
if order not in [1, 2]: | |
raise TypeError( | |
"order should be either 1 or 2\ | |
Got {}".format( | |
order | |
) | |
) | |
if mode == 'sobel' and order == 1: | |
kernel: torch.Tensor = get_sobel_kernel2d() | |
elif mode == 'sobel' and order == 2: | |
kernel = get_sobel_kernel2d_2nd_order() | |
elif mode == 'diff' and order == 1: | |
kernel = get_diff_kernel2d() | |
elif mode == 'diff' and order == 2: | |
kernel = get_diff_kernel2d_2nd_order() | |
else: | |
raise NotImplementedError("") | |
return kernel | |
def get_spatial_gradient_kernel3d(mode: str, order: int, device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor: | |
r"""Function that returns kernel for 1st or 2nd order scale pyramid gradients, using one of the following | |
operators: sobel, diff.""" | |
if mode not in ['sobel', 'diff']: | |
raise TypeError( | |
"mode should be either sobel\ | |
or diff. Got {}".format( | |
mode | |
) | |
) | |
if order not in [1, 2]: | |
raise TypeError( | |
"order should be either 1 or 2\ | |
Got {}".format( | |
order | |
) | |
) | |
if mode == 'sobel': | |
raise NotImplementedError("Sobel kernel for 3d gradient is not implemented yet") | |
if mode == 'diff' and order == 1: | |
kernel = get_diff_kernel3d(device, dtype) | |
elif mode == 'diff' and order == 2: | |
kernel = get_diff_kernel3d_2nd_order(device, dtype) | |
else: | |
raise NotImplementedError("") | |
return kernel | |
def get_gaussian_kernel1d(kernel_size: int, sigma: float, force_even: bool = False) -> torch.Tensor: | |
r"""Function that returns Gaussian filter coefficients. | |
Args: | |
kernel_size: filter size. It should be odd and positive. | |
sigma: gaussian standard deviation. | |
force_even: overrides requirement for odd kernel size. | |
Returns: | |
1D tensor with gaussian filter coefficients. | |
Shape: | |
- Output: :math:`(\text{kernel_size})` | |
Examples: | |
>>> get_gaussian_kernel1d(3, 2.5) | |
tensor([0.3243, 0.3513, 0.3243]) | |
>>> get_gaussian_kernel1d(5, 1.5) | |
tensor([0.1201, 0.2339, 0.2921, 0.2339, 0.1201]) | |
""" | |
if not isinstance(kernel_size, int) or ((kernel_size % 2 == 0) and not force_even) or (kernel_size <= 0): | |
raise TypeError("kernel_size must be an odd positive integer. " "Got {}".format(kernel_size)) | |
window_1d: torch.Tensor = gaussian(kernel_size, sigma) | |
return window_1d | |
def get_gaussian_discrete_kernel1d(kernel_size: int, sigma: float, force_even: bool = False) -> torch.Tensor: | |
r"""Function that returns Gaussian filter coefficients based on the modified Bessel functions. Adapted from: | |
https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py. | |
Args: | |
kernel_size: filter size. It should be odd and positive. | |
sigma: gaussian standard deviation. | |
force_even: overrides requirement for odd kernel size. | |
Returns: | |
1D tensor with gaussian filter coefficients. | |
Shape: | |
- Output: :math:`(\text{kernel_size})` | |
Examples: | |
>>> get_gaussian_discrete_kernel1d(3, 2.5) | |
tensor([0.3235, 0.3531, 0.3235]) | |
>>> get_gaussian_discrete_kernel1d(5, 1.5) | |
tensor([0.1096, 0.2323, 0.3161, 0.2323, 0.1096]) | |
""" | |
if not isinstance(kernel_size, int) or ((kernel_size % 2 == 0) and not force_even) or (kernel_size <= 0): | |
raise TypeError("kernel_size must be an odd positive integer. " "Got {}".format(kernel_size)) | |
window_1d = gaussian_discrete(kernel_size, sigma) | |
return window_1d | |
def get_gaussian_erf_kernel1d(kernel_size: int, sigma: float, force_even: bool = False) -> torch.Tensor: | |
r"""Function that returns Gaussian filter coefficients by interpolating the error function, adapted from: | |
https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/layers/convutils.py. | |
Args: | |
kernel_size: filter size. It should be odd and positive. | |
sigma: gaussian standard deviation. | |
force_even: overrides requirement for odd kernel size. | |
Returns: | |
1D tensor with gaussian filter coefficients. | |
Shape: | |
- Output: :math:`(\text{kernel_size})` | |
Examples: | |
>>> get_gaussian_erf_kernel1d(3, 2.5) | |
tensor([0.3245, 0.3511, 0.3245]) | |
>>> get_gaussian_erf_kernel1d(5, 1.5) | |
tensor([0.1226, 0.2331, 0.2887, 0.2331, 0.1226]) | |
""" | |
if not isinstance(kernel_size, int) or ((kernel_size % 2 == 0) and not force_even) or (kernel_size <= 0): | |
raise TypeError("kernel_size must be an odd positive integer. " "Got {}".format(kernel_size)) | |
window_1d = gaussian_discrete_erf(kernel_size, sigma) | |
return window_1d | |
def get_gaussian_kernel2d( | |
kernel_size: Tuple[int, int], sigma: Tuple[float, float], force_even: bool = False | |
) -> torch.Tensor: | |
r"""Function that returns Gaussian filter matrix coefficients. | |
Args: | |
kernel_size: filter sizes in the x and y direction. | |
Sizes should be odd and positive. | |
sigma: gaussian standard deviation in the x and y | |
direction. | |
force_even: overrides requirement for odd kernel size. | |
Returns: | |
2D tensor with gaussian filter matrix coefficients. | |
Shape: | |
- Output: :math:`(\text{kernel_size}_x, \text{kernel_size}_y)` | |
Examples: | |
>>> get_gaussian_kernel2d((3, 3), (1.5, 1.5)) | |
tensor([[0.0947, 0.1183, 0.0947], | |
[0.1183, 0.1478, 0.1183], | |
[0.0947, 0.1183, 0.0947]]) | |
>>> get_gaussian_kernel2d((3, 5), (1.5, 1.5)) | |
tensor([[0.0370, 0.0720, 0.0899, 0.0720, 0.0370], | |
[0.0462, 0.0899, 0.1123, 0.0899, 0.0462], | |
[0.0370, 0.0720, 0.0899, 0.0720, 0.0370]]) | |
""" | |
if not isinstance(kernel_size, tuple) or len(kernel_size) != 2: | |
raise TypeError(f"kernel_size must be a tuple of length two. Got {kernel_size}") | |
if not isinstance(sigma, tuple) or len(sigma) != 2: | |
raise TypeError(f"sigma must be a tuple of length two. Got {sigma}") | |
ksize_x, ksize_y = kernel_size | |
sigma_x, sigma_y = sigma | |
kernel_x: torch.Tensor = get_gaussian_kernel1d(ksize_x, sigma_x, force_even) | |
kernel_y: torch.Tensor = get_gaussian_kernel1d(ksize_y, sigma_y, force_even) | |
kernel_2d: torch.Tensor = torch.matmul(kernel_x.unsqueeze(-1), kernel_y.unsqueeze(-1).t()) | |
return kernel_2d | |
def get_laplacian_kernel1d(kernel_size: int) -> torch.Tensor: | |
r"""Function that returns the coefficients of a 1D Laplacian filter. | |
Args: | |
kernel_size: filter size. It should be odd and positive. | |
Returns: | |
1D tensor with laplacian filter coefficients. | |
Shape: | |
- Output: math:`(\text{kernel_size})` | |
Examples: | |
>>> get_laplacian_kernel1d(3) | |
tensor([ 1., -2., 1.]) | |
>>> get_laplacian_kernel1d(5) | |
tensor([ 1., 1., -4., 1., 1.]) | |
""" | |
if not isinstance(kernel_size, int) or kernel_size % 2 == 0 or kernel_size <= 0: | |
raise TypeError(f"ksize must be an odd positive integer. Got {kernel_size}") | |
window_1d: torch.Tensor = laplacian_1d(kernel_size) | |
return window_1d | |
def get_laplacian_kernel2d(kernel_size: int) -> torch.Tensor: | |
r"""Function that returns Gaussian filter matrix coefficients. | |
Args: | |
kernel_size: filter size should be odd. | |
Returns: | |
2D tensor with laplacian filter matrix coefficients. | |
Shape: | |
- Output: :math:`(\text{kernel_size}_x, \text{kernel_size}_y)` | |
Examples: | |
>>> get_laplacian_kernel2d(3) | |
tensor([[ 1., 1., 1.], | |
[ 1., -8., 1.], | |
[ 1., 1., 1.]]) | |
>>> get_laplacian_kernel2d(5) | |
tensor([[ 1., 1., 1., 1., 1.], | |
[ 1., 1., 1., 1., 1.], | |
[ 1., 1., -24., 1., 1.], | |
[ 1., 1., 1., 1., 1.], | |
[ 1., 1., 1., 1., 1.]]) | |
""" | |
if not isinstance(kernel_size, int) or kernel_size % 2 == 0 or kernel_size <= 0: | |
raise TypeError(f"ksize must be an odd positive integer. Got {kernel_size}") | |
kernel = torch.ones((kernel_size, kernel_size)) | |
mid = kernel_size // 2 | |
kernel[mid, mid] = 1 - kernel_size**2 | |
kernel_2d: torch.Tensor = kernel | |
return kernel_2d | |
def get_pascal_kernel_2d(kernel_size: int, norm: bool = True) -> torch.Tensor: | |
"""Generate pascal filter kernel by kernel size. | |
Args: | |
kernel_size: height and width of the kernel. | |
norm: if to normalize the kernel or not. Default: True. | |
Returns: | |
kernel shaped as :math:`(kernel_size, kernel_size)` | |
Examples: | |
>>> get_pascal_kernel_2d(1) | |
tensor([[1.]]) | |
>>> get_pascal_kernel_2d(4) | |
tensor([[0.0156, 0.0469, 0.0469, 0.0156], | |
[0.0469, 0.1406, 0.1406, 0.0469], | |
[0.0469, 0.1406, 0.1406, 0.0469], | |
[0.0156, 0.0469, 0.0469, 0.0156]]) | |
>>> get_pascal_kernel_2d(4, norm=False) | |
tensor([[1., 3., 3., 1.], | |
[3., 9., 9., 3.], | |
[3., 9., 9., 3.], | |
[1., 3., 3., 1.]]) | |
""" | |
a = get_pascal_kernel_1d(kernel_size) | |
filt = a[:, None] * a[None, :] | |
if norm: | |
filt = filt / torch.sum(filt) | |
return filt | |
def get_pascal_kernel_1d(kernel_size: int, norm: bool = False) -> torch.Tensor: | |
"""Generate Yang Hui triangle (Pascal's triangle) by a given number. | |
Args: | |
kernel_size: height and width of the kernel. | |
norm: if to normalize the kernel or not. Default: False. | |
Returns: | |
kernel shaped as :math:`(kernel_size,)` | |
Examples: | |
>>> get_pascal_kernel_1d(1) | |
tensor([1.]) | |
>>> get_pascal_kernel_1d(2) | |
tensor([1., 1.]) | |
>>> get_pascal_kernel_1d(3) | |
tensor([1., 2., 1.]) | |
>>> get_pascal_kernel_1d(4) | |
tensor([1., 3., 3., 1.]) | |
>>> get_pascal_kernel_1d(5) | |
tensor([1., 4., 6., 4., 1.]) | |
>>> get_pascal_kernel_1d(6) | |
tensor([ 1., 5., 10., 10., 5., 1.]) | |
""" | |
pre: List[float] = [] | |
cur: List[float] = [] | |
for i in range(kernel_size): | |
cur = [1.0] * (i + 1) | |
for j in range(1, i // 2 + 1): | |
value = pre[j - 1] + pre[j] | |
cur[j] = value | |
if i != 2 * j: | |
cur[-j - 1] = value | |
pre = cur | |
out = torch.as_tensor(cur) | |
if norm: | |
out = out / torch.sum(out) | |
return out | |
def get_canny_nms_kernel(device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor: | |
"""Utility function that returns 3x3 kernels for the Canny Non-maximal suppression.""" | |
kernel: torch.Tensor = torch.tensor( | |
[ | |
[[0.0, 0.0, 0.0], [0.0, 1.0, -1.0], [0.0, 0.0, 0.0]], | |
[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]], | |
[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0]], | |
[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0]], | |
[[0.0, 0.0, 0.0], [-1.0, 1.0, 0.0], [0.0, 0.0, 0.0]], | |
[[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]], | |
[[0.0, -1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]], | |
[[0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]], | |
], | |
device=device, | |
dtype=dtype, | |
) | |
return kernel.unsqueeze(1) | |
def get_hysteresis_kernel(device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor: | |
"""Utility function that returns the 3x3 kernels for the Canny hysteresis.""" | |
kernel: torch.Tensor = torch.tensor( | |
[ | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]], | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]], | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]], | |
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [1.0, 0.0, 0.0]], | |
[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
[[1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
[[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
[[0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], | |
], | |
device=device, | |
dtype=dtype, | |
) | |
return kernel.unsqueeze(1) | |
def get_hanning_kernel1d(kernel_size: int, device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor: | |
r"""Returns Hanning (also known as Hann) kernel, used in signal processing and KCF tracker. | |
.. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right) | |
\\qquad 0 \\leq n \\leq M-1 | |
See further in numpy docs https://numpy.org/doc/stable/reference/generated/numpy.hanning.html | |
Args: | |
kernel_size: The size the of the kernel. It should be positive. | |
Returns: | |
1D tensor with Hanning filter coefficients. | |
.. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right) | |
Shape: | |
- Output: math:`(\text{kernel_size})` | |
Examples: | |
>>> get_hanning_kernel1d(4) | |
tensor([0.0000, 0.7500, 0.7500, 0.0000]) | |
""" | |
if not isinstance(kernel_size, int) or kernel_size <= 2: | |
raise TypeError(f"ksize must be an positive integer > 2. Got {kernel_size}") | |
x: torch.Tensor = torch.arange(kernel_size, device=device, dtype=dtype) | |
x = 0.5 - 0.5 * torch.cos(2.0 * math.pi * x / float(kernel_size - 1)) | |
return x | |
def get_hanning_kernel2d(kernel_size: Tuple[int, int], device=torch.device('cpu'), dtype=torch.float) -> torch.Tensor: | |
r"""Returns 2d Hanning kernel, used in signal processing and KCF tracker. | |
Args: | |
kernel_size: The size of the kernel for the filter. It should be positive. | |
Returns: | |
2D tensor with Hanning filter coefficients. | |
.. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right) | |
Shape: | |
- Output: math:`(\text{kernel_size[0], kernel_size[1]})` | |
""" | |
if kernel_size[0] <= 2 or kernel_size[1] <= 2: | |
raise TypeError(f"ksize must be an tuple of positive integers > 2. Got {kernel_size}") | |
ky: torch.Tensor = get_hanning_kernel1d(kernel_size[0], device, dtype)[None].T | |
kx: torch.Tensor = get_hanning_kernel1d(kernel_size[1], device, dtype)[None] | |
kernel2d = ky @ kx | |
return kernel2d |