File size: 22,133 Bytes
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
''' Towards An End-to-End Framework for Video Inpainting
'''

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision

from einops import rearrange

from model.modules.base_module import BaseNetwork
from model.modules.sparse_transformer import TemporalSparseTransformerBlock, SoftSplit, SoftComp
from model.modules.spectral_norm import spectral_norm as _spectral_norm
from model.modules.flow_loss_utils import flow_warp
from model.modules.deformconv import ModulatedDeformConv2d

from .misc import constant_init

def length_sq(x):
    return torch.sum(torch.square(x), dim=1, keepdim=True)

def fbConsistencyCheck(flow_fw, flow_bw, alpha1=0.01, alpha2=0.5):
    flow_bw_warped = flow_warp(flow_bw, flow_fw.permute(0, 2, 3, 1))  # wb(wf(x))
    flow_diff_fw = flow_fw + flow_bw_warped  # wf + wb(wf(x))

    mag_sq_fw = length_sq(flow_fw) + length_sq(flow_bw_warped)  # |wf| + |wb(wf(x))|
    occ_thresh_fw = alpha1 * mag_sq_fw + alpha2

    # fb_valid_fw = (length_sq(flow_diff_fw) < occ_thresh_fw).float()
    fb_valid_fw = (length_sq(flow_diff_fw) < occ_thresh_fw).to(flow_fw)
    return fb_valid_fw
        
        
class DeformableAlignment(ModulatedDeformConv2d):
    """Second-order deformable alignment module."""
    def __init__(self, *args, **kwargs):
        # self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 10)
        self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 3)

        super(DeformableAlignment, self).__init__(*args, **kwargs)

        self.conv_offset = nn.Sequential(
            nn.Conv2d(2*self.out_channels + 2 + 1 + 2, self.out_channels, 3, 1, 1),
            nn.LeakyReLU(negative_slope=0.1, inplace=True),
            nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
            nn.LeakyReLU(negative_slope=0.1, inplace=True),
            nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
            nn.LeakyReLU(negative_slope=0.1, inplace=True),
            nn.Conv2d(self.out_channels, 27 * self.deform_groups, 3, 1, 1),
        )
        self.init_offset()

    def init_offset(self):
        constant_init(self.conv_offset[-1], val=0, bias=0)

    def forward(self, x, cond_feat, flow):
        out = self.conv_offset(cond_feat)
        o1, o2, mask = torch.chunk(out, 3, dim=1)

        # offset
        offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1))
        offset = offset + flow.flip(1).repeat(1, offset.size(1) // 2, 1, 1)

        # mask
        mask = torch.sigmoid(mask)

        return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, 
                                             self.stride, self.padding,
                                             self.dilation, mask)


class BidirectionalPropagation(nn.Module):
    def __init__(self, channel, learnable=True):
        super(BidirectionalPropagation, self).__init__()
        self.deform_align = nn.ModuleDict()
        self.backbone = nn.ModuleDict()
        self.channel = channel
        self.prop_list = ['backward_1', 'forward_1']
        self.learnable = learnable

        if self.learnable:
            for i, module in enumerate(self.prop_list):
                self.deform_align[module] = DeformableAlignment(
                    channel, channel, 3, padding=1, deform_groups=16)

                self.backbone[module] = nn.Sequential(
                    nn.Conv2d(2*channel+2, channel, 3, 1, 1),
                    nn.LeakyReLU(negative_slope=0.2, inplace=True),
                    nn.Conv2d(channel, channel, 3, 1, 1),
                )

            self.fuse = nn.Sequential(
                    nn.Conv2d(2*channel+2, channel, 3, 1, 1),
                    nn.LeakyReLU(negative_slope=0.2, inplace=True),
                    nn.Conv2d(channel, channel, 3, 1, 1),
                ) 
            
    def binary_mask(self, mask, th=0.1):
        mask[mask>th] = 1
        mask[mask<=th] = 0
        # return mask.float()
        return mask.to(mask)

    def forward(self, x, flows_forward, flows_backward, mask, interpolation='bilinear'):
        """
        x shape : [b, t, c, h, w]
        return [b, t, c, h, w]
        """

        # For backward warping
        # pred_flows_forward for backward feature propagation
        # pred_flows_backward for forward feature propagation
        b, t, c, h, w = x.shape
        feats, masks = {}, {}
        feats['input'] = [x[:, i, :, :, :] for i in range(0, t)]
        masks['input'] = [mask[:, i, :, :, :] for i in range(0, t)]

        prop_list = ['backward_1', 'forward_1']
        cache_list = ['input'] +  prop_list

        for p_i, module_name in enumerate(prop_list):
            feats[module_name] = []
            masks[module_name] = []

            if 'backward' in module_name:
                frame_idx = range(0, t)
                frame_idx = frame_idx[::-1]
                flow_idx = frame_idx
                flows_for_prop = flows_forward
                flows_for_check = flows_backward
            else:
                frame_idx = range(0, t)
                flow_idx = range(-1, t - 1)
                flows_for_prop = flows_backward
                flows_for_check = flows_forward

            for i, idx in enumerate(frame_idx):
                feat_current = feats[cache_list[p_i]][idx]
                mask_current = masks[cache_list[p_i]][idx]

                if i == 0:
                    feat_prop = feat_current
                    mask_prop = mask_current
                else:
                    flow_prop = flows_for_prop[:, flow_idx[i], :, :, :]
                    flow_check = flows_for_check[:, flow_idx[i], :, :, :]
                    flow_vaild_mask = fbConsistencyCheck(flow_prop, flow_check)
                    feat_warped = flow_warp(feat_prop, flow_prop.permute(0, 2, 3, 1), interpolation)

                    if self.learnable:
                        cond = torch.cat([feat_current, feat_warped, flow_prop, flow_vaild_mask, mask_current], dim=1)
                        feat_prop = self.deform_align[module_name](feat_prop, cond, flow_prop)
                        mask_prop = mask_current
                    else:
                        mask_prop_valid = flow_warp(mask_prop, flow_prop.permute(0, 2, 3, 1))
                        mask_prop_valid = self.binary_mask(mask_prop_valid)

                        union_vaild_mask = self.binary_mask(mask_current*flow_vaild_mask*(1-mask_prop_valid))
                        feat_prop = union_vaild_mask * feat_warped + (1-union_vaild_mask) * feat_current
                        # update mask
                        mask_prop = self.binary_mask(mask_current*(1-(flow_vaild_mask*(1-mask_prop_valid))))
                
                # refine
                if self.learnable:
                    feat = torch.cat([feat_current, feat_prop, mask_current], dim=1)
                    feat_prop = feat_prop + self.backbone[module_name](feat)
                    # feat_prop = self.backbone[module_name](feat_prop)

                feats[module_name].append(feat_prop)
                masks[module_name].append(mask_prop)

            # end for
            if 'backward' in module_name:
                feats[module_name] = feats[module_name][::-1]
                masks[module_name] = masks[module_name][::-1]

        outputs_b = torch.stack(feats['backward_1'], dim=1).view(-1, c, h, w)
        outputs_f = torch.stack(feats['forward_1'], dim=1).view(-1, c, h, w)

        if self.learnable:
            mask_in = mask.view(-1, 2, h, w)
            masks_b, masks_f = None, None
            outputs = self.fuse(torch.cat([outputs_b, outputs_f, mask_in], dim=1)) + x.view(-1, c, h, w)
        else:
            masks_b = torch.stack(masks['backward_1'], dim=1)
            masks_f = torch.stack(masks['forward_1'], dim=1)
            outputs = outputs_f

        return outputs_b.view(b, -1, c, h, w), outputs_f.view(b, -1, c, h, w), \
               outputs.view(b, -1, c, h, w), masks_f


class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        self.group = [1, 2, 4, 8, 1]
        self.layers = nn.ModuleList([
            nn.Conv2d(5, 64, kernel_size=3, stride=2, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(256, 384, kernel_size=3, stride=1, padding=1, groups=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(640, 512, kernel_size=3, stride=1, padding=1, groups=2),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(768, 384, kernel_size=3, stride=1, padding=1, groups=4),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(640, 256, kernel_size=3, stride=1, padding=1, groups=8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(512, 128, kernel_size=3, stride=1, padding=1, groups=1),
            nn.LeakyReLU(0.2, inplace=True)
        ])

    def forward(self, x):
        bt, c, _, _ = x.size()
        # h, w = h//4, w//4
        out = x
        for i, layer in enumerate(self.layers):
            if i == 8:
                x0 = out
                _, _, h, w = x0.size()
            if i > 8 and i % 2 == 0:
                g = self.group[(i - 8) // 2]
                x = x0.view(bt, g, -1, h, w)
                o = out.view(bt, g, -1, h, w)
                out = torch.cat([x, o], 2).view(bt, -1, h, w)
            out = layer(out)
        return out


class deconv(nn.Module):
    def __init__(self,
                 input_channel,
                 output_channel,
                 kernel_size=3,
                 padding=0):
        super().__init__()
        self.conv = nn.Conv2d(input_channel,
                              output_channel,
                              kernel_size=kernel_size,
                              stride=1,
                              padding=padding)

    def forward(self, x):
        x = F.interpolate(x,
                          scale_factor=2,
                          mode='bilinear',
                          align_corners=True)
        return self.conv(x)


class InpaintGenerator(BaseNetwork):
    def __init__(self, init_weights=True, model_path=None):
        super(InpaintGenerator, self).__init__()
        channel = 128
        hidden = 512

        # encoder
        self.encoder = Encoder()

        # decoder
        self.decoder = nn.Sequential(
            deconv(channel, 128, kernel_size=3, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            deconv(64, 64, kernel_size=3, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, 3, kernel_size=3, stride=1, padding=1))

        # soft split and soft composition
        kernel_size = (7, 7)
        padding = (3, 3)
        stride = (3, 3)
        t2t_params = {
            'kernel_size': kernel_size,
            'stride': stride,
            'padding': padding
        }
        self.ss = SoftSplit(channel, hidden, kernel_size, stride, padding)
        self.sc = SoftComp(channel, hidden, kernel_size, stride, padding)
        self.max_pool = nn.MaxPool2d(kernel_size, stride, padding)

        # feature propagation module
        self.img_prop_module = BidirectionalPropagation(3, learnable=False)
        self.feat_prop_module = BidirectionalPropagation(128, learnable=True)
        
        
        depths = 8
        num_heads = 4
        window_size = (5, 9)
        pool_size = (4, 4)
        self.transformers = TemporalSparseTransformerBlock(dim=hidden,
                                                n_head=num_heads,
                                                window_size=window_size,
                                                pool_size=pool_size,
                                                depths=depths,
                                                t2t_params=t2t_params)
        if init_weights:
            self.init_weights()


        if model_path is not None:
            print('Pretrained ProPainter has loaded...')
            ckpt = torch.load(model_path, map_location='cpu')
            self.load_state_dict(ckpt, strict=True)

        # print network parameter number
        self.print_network()

    def img_propagation(self, masked_frames, completed_flows, masks, interpolation='nearest'):
        _, _, prop_frames, updated_masks = self.img_prop_module(masked_frames, completed_flows[0], completed_flows[1], masks, interpolation)
        return prop_frames, updated_masks

    def forward(self, masked_frames, completed_flows, masks_in, masks_updated, num_local_frames, interpolation='bilinear', t_dilation=2):
        """
        Args:
            masks_in: original mask
            masks_updated: updated mask after image propagation
        """

        l_t = num_local_frames
        b, t, _, ori_h, ori_w = masked_frames.size()

        # extracting features
        enc_feat = self.encoder(torch.cat([masked_frames.view(b * t, 3, ori_h, ori_w),
                                        masks_in.view(b * t, 1, ori_h, ori_w),
                                        masks_updated.view(b * t, 1, ori_h, ori_w)], dim=1))
        _, c, h, w = enc_feat.size()
        local_feat = enc_feat.view(b, t, c, h, w)[:, :l_t, ...]
        ref_feat = enc_feat.view(b, t, c, h, w)[:, l_t:, ...]
        fold_feat_size = (h, w)

        ds_flows_f = F.interpolate(completed_flows[0].view(-1, 2, ori_h, ori_w), scale_factor=1/4, mode='bilinear', align_corners=False).view(b, l_t-1, 2, h, w)/4.0
        ds_flows_b = F.interpolate(completed_flows[1].view(-1, 2, ori_h, ori_w), scale_factor=1/4, mode='bilinear', align_corners=False).view(b, l_t-1, 2, h, w)/4.0
        ds_mask_in = F.interpolate(masks_in.reshape(-1, 1, ori_h, ori_w), scale_factor=1/4, mode='nearest').view(b, t, 1, h, w)
        ds_mask_in_local = ds_mask_in[:, :l_t]
        ds_mask_updated_local =  F.interpolate(masks_updated[:,:l_t].reshape(-1, 1, ori_h, ori_w), scale_factor=1/4, mode='nearest').view(b, l_t, 1, h, w)


        if self.training:
            mask_pool_l = self.max_pool(ds_mask_in.view(-1, 1, h, w))
            mask_pool_l = mask_pool_l.view(b, t, 1, mask_pool_l.size(-2), mask_pool_l.size(-1))
        else:
            mask_pool_l = self.max_pool(ds_mask_in_local.view(-1, 1, h, w))
            mask_pool_l = mask_pool_l.view(b, l_t, 1, mask_pool_l.size(-2), mask_pool_l.size(-1))


        prop_mask_in = torch.cat([ds_mask_in_local, ds_mask_updated_local], dim=2)
        _, _, local_feat, _ = self.feat_prop_module(local_feat, ds_flows_f, ds_flows_b, prop_mask_in, interpolation)
        enc_feat = torch.cat((local_feat, ref_feat), dim=1)

        trans_feat = self.ss(enc_feat.view(-1, c, h, w), b, fold_feat_size)
        mask_pool_l = rearrange(mask_pool_l, 'b t c h w -> b t h w c').contiguous()
        trans_feat = self.transformers(trans_feat, fold_feat_size, mask_pool_l, t_dilation=t_dilation)
        trans_feat = self.sc(trans_feat, t, fold_feat_size)
        trans_feat = trans_feat.view(b, t, -1, h, w)

        enc_feat = enc_feat + trans_feat

        if self.training:
            output = self.decoder(enc_feat.view(-1, c, h, w))
            output = torch.tanh(output).view(b, t, 3, ori_h, ori_w)
        else:
            output = self.decoder(enc_feat[:, :l_t].view(-1, c, h, w))
            output = torch.tanh(output).view(b, l_t, 3, ori_h, ori_w)

        return output


# ######################################################################
#  Discriminator for Temporal Patch GAN
# ######################################################################
class Discriminator(BaseNetwork):
    def __init__(self,
                 in_channels=3,
                 use_sigmoid=False,
                 use_spectral_norm=True,
                 init_weights=True):
        super(Discriminator, self).__init__()
        self.use_sigmoid = use_sigmoid
        nf = 32

        self.conv = nn.Sequential(
            spectral_norm(
                nn.Conv3d(in_channels=in_channels,
                          out_channels=nf * 1,
                          kernel_size=(3, 5, 5),
                          stride=(1, 2, 2),
                          padding=1,
                          bias=not use_spectral_norm), use_spectral_norm),
            # nn.InstanceNorm2d(64, track_running_stats=False),
            nn.LeakyReLU(0.2, inplace=True),
            spectral_norm(
                nn.Conv3d(nf * 1,
                          nf * 2,
                          kernel_size=(3, 5, 5),
                          stride=(1, 2, 2),
                          padding=(1, 2, 2),
                          bias=not use_spectral_norm), use_spectral_norm),
            # nn.InstanceNorm2d(128, track_running_stats=False),
            nn.LeakyReLU(0.2, inplace=True),
            spectral_norm(
                nn.Conv3d(nf * 2,
                          nf * 4,
                          kernel_size=(3, 5, 5),
                          stride=(1, 2, 2),
                          padding=(1, 2, 2),
                          bias=not use_spectral_norm), use_spectral_norm),
            # nn.InstanceNorm2d(256, track_running_stats=False),
            nn.LeakyReLU(0.2, inplace=True),
            spectral_norm(
                nn.Conv3d(nf * 4,
                          nf * 4,
                          kernel_size=(3, 5, 5),
                          stride=(1, 2, 2),
                          padding=(1, 2, 2),
                          bias=not use_spectral_norm), use_spectral_norm),
            # nn.InstanceNorm2d(256, track_running_stats=False),
            nn.LeakyReLU(0.2, inplace=True),
            spectral_norm(
                nn.Conv3d(nf * 4,
                          nf * 4,
                          kernel_size=(3, 5, 5),
                          stride=(1, 2, 2),
                          padding=(1, 2, 2),
                          bias=not use_spectral_norm), use_spectral_norm),
            # nn.InstanceNorm2d(256, track_running_stats=False),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv3d(nf * 4,
                      nf * 4,
                      kernel_size=(3, 5, 5),
                      stride=(1, 2, 2),
                      padding=(1, 2, 2)))

        if init_weights:
            self.init_weights()

    def forward(self, xs):
        # T, C, H, W = xs.shape (old)
        # B, T, C, H, W (new)
        xs_t = torch.transpose(xs, 1, 2)
        feat = self.conv(xs_t)
        if self.use_sigmoid:
            feat = torch.sigmoid(feat)
        out = torch.transpose(feat, 1, 2)  # B, T, C, H, W
        return out


class Discriminator_2D(BaseNetwork):
    def __init__(self,
                 in_channels=3,
                 use_sigmoid=False,
                 use_spectral_norm=True,
                 init_weights=True):
        super(Discriminator_2D, self).__init__()
        self.use_sigmoid = use_sigmoid
        nf = 32

        self.conv = nn.Sequential(
            spectral_norm(
                nn.Conv3d(in_channels=in_channels,
                          out_channels=nf * 1,
                          kernel_size=(1, 5, 5),
                          stride=(1, 2, 2),
                          padding=(0, 2, 2),
                          bias=not use_spectral_norm), use_spectral_norm),
            # nn.InstanceNorm2d(64, track_running_stats=False),
            nn.LeakyReLU(0.2, inplace=True),
            spectral_norm(
                nn.Conv3d(nf * 1,
                          nf * 2,
                          kernel_size=(1, 5, 5),
                          stride=(1, 2, 2),
                          padding=(0, 2, 2),
                          bias=not use_spectral_norm), use_spectral_norm),
            # nn.InstanceNorm2d(128, track_running_stats=False),
            nn.LeakyReLU(0.2, inplace=True),
            spectral_norm(
                nn.Conv3d(nf * 2,
                          nf * 4,
                          kernel_size=(1, 5, 5),
                          stride=(1, 2, 2),
                          padding=(0, 2, 2),
                          bias=not use_spectral_norm), use_spectral_norm),
            # nn.InstanceNorm2d(256, track_running_stats=False),
            nn.LeakyReLU(0.2, inplace=True),
            spectral_norm(
                nn.Conv3d(nf * 4,
                          nf * 4,
                          kernel_size=(1, 5, 5),
                          stride=(1, 2, 2),
                          padding=(0, 2, 2),
                          bias=not use_spectral_norm), use_spectral_norm),
            # nn.InstanceNorm2d(256, track_running_stats=False),
            nn.LeakyReLU(0.2, inplace=True),
            spectral_norm(
                nn.Conv3d(nf * 4,
                          nf * 4,
                          kernel_size=(1, 5, 5),
                          stride=(1, 2, 2),
                          padding=(0, 2, 2),
                          bias=not use_spectral_norm), use_spectral_norm),
            # nn.InstanceNorm2d(256, track_running_stats=False),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv3d(nf * 4,
                      nf * 4,
                      kernel_size=(1, 5, 5),
                      stride=(1, 2, 2),
                      padding=(0, 2, 2)))

        if init_weights:
            self.init_weights()

    def forward(self, xs):
        # T, C, H, W = xs.shape (old)
        # B, T, C, H, W (new)
        xs_t = torch.transpose(xs, 1, 2)
        feat = self.conv(xs_t)
        if self.use_sigmoid:
            feat = torch.sigmoid(feat)
        out = torch.transpose(feat, 1, 2)  # B, T, C, H, W
        return out

def spectral_norm(module, mode=True):
    if mode:
        return _spectral_norm(module)
    return module