File size: 23,632 Bytes
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import os
import glob
import logging
import importlib
from tqdm import tqdm

import torch
import torch.nn as nn
import torch.nn.functional as F
from core.prefetch_dataloader import PrefetchDataLoader, CPUPrefetcher
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import torchvision
from torch.utils.tensorboard import SummaryWriter

from core.lr_scheduler import MultiStepRestartLR, CosineAnnealingRestartLR
from core.loss import AdversarialLoss, PerceptualLoss, LPIPSLoss
from core.dataset import TrainDataset

from model.modules.flow_comp_raft import RAFT_bi, FlowLoss, EdgeLoss
from model.recurrent_flow_completion import RecurrentFlowCompleteNet

from RAFT.utils.flow_viz_pt import flow_to_image


class Trainer:
    def __init__(self, config):
        self.config = config
        self.epoch = 0
        self.iteration = 0
        self.num_local_frames = config['train_data_loader']['num_local_frames']
        self.num_ref_frames = config['train_data_loader']['num_ref_frames']

        # setup data set and data loader
        self.train_dataset = TrainDataset(config['train_data_loader'])

        self.train_sampler = None
        self.train_args = config['trainer']
        if config['distributed']:
            self.train_sampler = DistributedSampler(
                self.train_dataset,
                num_replicas=config['world_size'],
                rank=config['global_rank'])

        dataloader_args = dict(
            dataset=self.train_dataset,
            batch_size=self.train_args['batch_size'] // config['world_size'],
            shuffle=(self.train_sampler is None),
            num_workers=self.train_args['num_workers'],
            sampler=self.train_sampler,
            drop_last=True)

        self.train_loader = PrefetchDataLoader(self.train_args['num_prefetch_queue'], **dataloader_args)
        self.prefetcher = CPUPrefetcher(self.train_loader)

        # set loss functions
        self.adversarial_loss = AdversarialLoss(type=self.config['losses']['GAN_LOSS'])
        self.adversarial_loss = self.adversarial_loss.to(self.config['device'])
        self.l1_loss = nn.L1Loss()
        # self.perc_loss = PerceptualLoss(
        #                     layer_weights={'conv3_4': 0.25, 'conv4_4': 0.25, 'conv5_4': 0.5}, 
        #                     use_input_norm=True,
        #                     range_norm=True,
        #                     criterion='l1'
        #                     ).to(self.config['device'])

        if self.config['losses']['perceptual_weight'] > 0:
            self.perc_loss = LPIPSLoss(use_input_norm=True, range_norm=True).to(self.config['device'])
        
        # self.flow_comp_loss = FlowCompletionLoss().to(self.config['device'])
        # self.flow_comp_loss = FlowCompletionLoss(self.config['device'])

        # set raft
        self.fix_raft = RAFT_bi(device = self.config['device'])
        self.fix_flow_complete = RecurrentFlowCompleteNet('/mnt/lustre/sczhou/VQGANs/CodeMOVI/experiments_model/recurrent_flow_completion_v5_train_flowcomp_v5/gen_760000.pth')
        for p in self.fix_flow_complete.parameters():
            p.requires_grad = False
        self.fix_flow_complete.to(self.config['device'])
        self.fix_flow_complete.eval()

        # self.flow_loss = FlowLoss()

        # setup models including generator and discriminator
        net = importlib.import_module('model.' + config['model']['net'])
        self.netG = net.InpaintGenerator()
        # print(self.netG)
        self.netG = self.netG.to(self.config['device'])
        if not self.config['model'].get('no_dis', False):
            if self.config['model'].get('dis_2d', False):
                self.netD = net.Discriminator_2D(
                    in_channels=3,
                    use_sigmoid=config['losses']['GAN_LOSS'] != 'hinge')
            else:
                self.netD = net.Discriminator(  
                    in_channels=3,
                    use_sigmoid=config['losses']['GAN_LOSS'] != 'hinge')
            self.netD = self.netD.to(self.config['device'])
        
        self.interp_mode = self.config['model']['interp_mode']
        # setup optimizers and schedulers
        self.setup_optimizers()
        self.setup_schedulers()
        self.load()

        if config['distributed']:
            self.netG = DDP(self.netG,
                            device_ids=[self.config['local_rank']],
                            output_device=self.config['local_rank'],
                            broadcast_buffers=True,
                            find_unused_parameters=True)
            if not self.config['model']['no_dis']:
                self.netD = DDP(self.netD,
                                device_ids=[self.config['local_rank']],
                                output_device=self.config['local_rank'],
                                broadcast_buffers=True,
                                find_unused_parameters=False)

        # set summary writer
        self.dis_writer = None
        self.gen_writer = None
        self.summary = {}
        if self.config['global_rank'] == 0 or (not config['distributed']):
            if not self.config['model']['no_dis']:
                self.dis_writer = SummaryWriter(
                    os.path.join(config['save_dir'], 'dis'))
            self.gen_writer = SummaryWriter(
                os.path.join(config['save_dir'], 'gen'))

    def setup_optimizers(self):
        """Set up optimizers."""
        backbone_params = []
        for name, param in self.netG.named_parameters():
            if param.requires_grad:
                backbone_params.append(param)
            else:
                print(f'Params {name} will not be optimized.')
                
        optim_params = [
            {
                'params': backbone_params,
                'lr': self.config['trainer']['lr']
            },
        ]

        self.optimG = torch.optim.Adam(optim_params,
                                       betas=(self.config['trainer']['beta1'],
                                              self.config['trainer']['beta2']))

        if not self.config['model']['no_dis']:
            self.optimD = torch.optim.Adam(
                self.netD.parameters(),
                lr=self.config['trainer']['lr'],
                betas=(self.config['trainer']['beta1'],
                       self.config['trainer']['beta2']))

    def setup_schedulers(self):
        """Set up schedulers."""
        scheduler_opt = self.config['trainer']['scheduler']
        scheduler_type = scheduler_opt.pop('type')

        if scheduler_type in ['MultiStepLR', 'MultiStepRestartLR']:
            self.scheG = MultiStepRestartLR(
                self.optimG,
                milestones=scheduler_opt['milestones'],
                gamma=scheduler_opt['gamma'])
            if not self.config['model']['no_dis']:
                self.scheD = MultiStepRestartLR(
                    self.optimD,
                    milestones=scheduler_opt['milestones'],
                    gamma=scheduler_opt['gamma'])
        elif scheduler_type == 'CosineAnnealingRestartLR':
            self.scheG = CosineAnnealingRestartLR(
                self.optimG,
                periods=scheduler_opt['periods'],
                restart_weights=scheduler_opt['restart_weights'],
                eta_min=scheduler_opt['eta_min'])
            if not self.config['model']['no_dis']:
                self.scheD = CosineAnnealingRestartLR(
                    self.optimD,
                    periods=scheduler_opt['periods'],
                    restart_weights=scheduler_opt['restart_weights'],
                    eta_min=scheduler_opt['eta_min'])
        else:
            raise NotImplementedError(
                f'Scheduler {scheduler_type} is not implemented yet.')

    def update_learning_rate(self):
        """Update learning rate."""
        self.scheG.step()
        if not self.config['model']['no_dis']:
            self.scheD.step()

    def get_lr(self):
        """Get current learning rate."""
        return self.optimG.param_groups[0]['lr']

    def add_summary(self, writer, name, val):
        """Add tensorboard summary."""
        if name not in self.summary:
            self.summary[name] = 0
        self.summary[name] += val
        n = self.train_args['log_freq']
        if writer is not None and self.iteration % n == 0:
            writer.add_scalar(name, self.summary[name] / n, self.iteration)
            self.summary[name] = 0

    def load(self):
        """Load netG (and netD)."""
        # get the latest checkpoint
        model_path = self.config['save_dir']
        # TODO: add resume name
        if os.path.isfile(os.path.join(model_path, 'latest.ckpt')):
            latest_epoch = open(os.path.join(model_path, 'latest.ckpt'),
                                'r').read().splitlines()[-1]
        else:
            ckpts = [
                os.path.basename(i).split('.pth')[0]
                for i in glob.glob(os.path.join(model_path, '*.pth'))
            ]
            ckpts.sort()
            latest_epoch = ckpts[-1][4:] if len(ckpts) > 0 else None

        if latest_epoch is not None:
            gen_path = os.path.join(model_path,
                                    f'gen_{int(latest_epoch):06d}.pth')
            dis_path = os.path.join(model_path,
                                    f'dis_{int(latest_epoch):06d}.pth')
            opt_path = os.path.join(model_path,
                                    f'opt_{int(latest_epoch):06d}.pth')

            if self.config['global_rank'] == 0:
                print(f'Loading model from {gen_path}...')
            dataG = torch.load(gen_path, map_location=self.config['device'])
            self.netG.load_state_dict(dataG)
            if not self.config['model']['no_dis'] and self.config['model']['load_d']:
                dataD = torch.load(dis_path, map_location=self.config['device'])
                self.netD.load_state_dict(dataD)

            data_opt = torch.load(opt_path, map_location=self.config['device'])
            self.optimG.load_state_dict(data_opt['optimG'])
            # self.scheG.load_state_dict(data_opt['scheG'])
            if not self.config['model']['no_dis'] and self.config['model']['load_d']:
                self.optimD.load_state_dict(data_opt['optimD'])
                # self.scheD.load_state_dict(data_opt['scheD'])
            self.epoch = data_opt['epoch']
            self.iteration = data_opt['iteration']
        else:
            gen_path = self.config['trainer'].get('gen_path', None)
            dis_path = self.config['trainer'].get('dis_path', None)
            opt_path = self.config['trainer'].get('opt_path', None)
            if gen_path is not None:
                if self.config['global_rank'] == 0:
                    print(f'Loading Gen-Net from {gen_path}...')
                dataG = torch.load(gen_path, map_location=self.config['device'])
                self.netG.load_state_dict(dataG)
                
                if dis_path is not None and not self.config['model']['no_dis'] and self.config['model']['load_d']:
                    if self.config['global_rank'] == 0:
                        print(f'Loading Dis-Net from {dis_path}...')
                    dataD = torch.load(dis_path, map_location=self.config['device'])
                    self.netD.load_state_dict(dataD)
                if opt_path is not None:
                    data_opt = torch.load(opt_path, map_location=self.config['device'])
                    self.optimG.load_state_dict(data_opt['optimG'])
                    self.scheG.load_state_dict(data_opt['scheG'])
                    if not self.config['model']['no_dis'] and self.config['model']['load_d']:
                        self.optimD.load_state_dict(data_opt['optimD'])
                        self.scheD.load_state_dict(data_opt['scheD'])
            else:
                if self.config['global_rank'] == 0:
                    print('Warnning: There is no trained model found.'
                        'An initialized model will be used.')

    def save(self, it):
        """Save parameters every eval_epoch"""
        if self.config['global_rank'] == 0:
            # configure path
            gen_path = os.path.join(self.config['save_dir'],
                                    f'gen_{it:06d}.pth')
            dis_path = os.path.join(self.config['save_dir'],
                                    f'dis_{it:06d}.pth')
            opt_path = os.path.join(self.config['save_dir'],
                                    f'opt_{it:06d}.pth')
            print(f'\nsaving model to {gen_path} ...')

            # remove .module for saving
            if isinstance(self.netG, torch.nn.DataParallel) or isinstance(self.netG, DDP):
                netG = self.netG.module
                if not self.config['model']['no_dis']:
                    netD = self.netD.module
            else:
                netG = self.netG
                if not self.config['model']['no_dis']:
                    netD = self.netD

            # save checkpoints
            torch.save(netG.state_dict(), gen_path)
            if not self.config['model']['no_dis']:
                torch.save(netD.state_dict(), dis_path)
                torch.save(
                    {
                        'epoch': self.epoch,
                        'iteration': self.iteration,
                        'optimG': self.optimG.state_dict(),
                        'optimD': self.optimD.state_dict(),
                        'scheG': self.scheG.state_dict(),
                        'scheD': self.scheD.state_dict()
                    }, opt_path)
            else:
                torch.save(
                    {
                        'epoch': self.epoch,
                        'iteration': self.iteration,
                        'optimG': self.optimG.state_dict(),
                        'scheG': self.scheG.state_dict()
                    }, opt_path)

            latest_path = os.path.join(self.config['save_dir'], 'latest.ckpt')
            os.system(f"echo {it:06d} > {latest_path}")

    def train(self):
        """training entry"""
        pbar = range(int(self.train_args['iterations']))
        if self.config['global_rank'] == 0:
            pbar = tqdm(pbar,
                        initial=self.iteration,
                        dynamic_ncols=True,
                        smoothing=0.01)

        os.makedirs('logs', exist_ok=True)

        logging.basicConfig(
            level=logging.INFO,
            format="%(asctime)s %(filename)s[line:%(lineno)d]"
            "%(levelname)s %(message)s",
            datefmt="%a, %d %b %Y %H:%M:%S",
            filename=f"logs/{self.config['save_dir'].split('/')[-1]}.log",
            filemode='w')

        while True:
            self.epoch += 1
            self.prefetcher.reset()
            if self.config['distributed']:
                self.train_sampler.set_epoch(self.epoch)
            self._train_epoch(pbar)
            if self.iteration > self.train_args['iterations']:
                break
        print('\nEnd training....')

    def _train_epoch(self, pbar):
        """Process input and calculate loss every training epoch"""
        device = self.config['device']
        train_data = self.prefetcher.next()
        while train_data is not None:
            self.iteration += 1
            frames, masks, flows_f, flows_b, _ = train_data
            frames, masks = frames.to(device), masks.to(device).float()
            l_t = self.num_local_frames
            b, t, c, h, w = frames.size()
            gt_local_frames = frames[:, :l_t, ...]
            local_masks = masks[:, :l_t, ...].contiguous()

            masked_frames = frames * (1 - masks)
            masked_local_frames = masked_frames[:, :l_t, ...]
            # get gt optical flow
            if flows_f[0] == 'None' or flows_b[0] == 'None':
                gt_flows_bi = self.fix_raft(gt_local_frames)
            else:
                gt_flows_bi = (flows_f.to(device), flows_b.to(device))

            # ---- complete flow ----
            pred_flows_bi, _ = self.fix_flow_complete.forward_bidirect_flow(gt_flows_bi, local_masks)
            pred_flows_bi = self.fix_flow_complete.combine_flow(gt_flows_bi, pred_flows_bi, local_masks)
            # pred_flows_bi = gt_flows_bi

            # ---- image propagation ----
            prop_imgs, updated_local_masks = self.netG.module.img_propagation(masked_local_frames, pred_flows_bi, local_masks, interpolation=self.interp_mode)
            updated_masks = masks.clone()
            updated_masks[:, :l_t, ...] = updated_local_masks.view(b, l_t, 1, h, w)
            updated_frames = masked_frames.clone()
            prop_local_frames = gt_local_frames * (1-local_masks) + prop_imgs.view(b, l_t, 3, h, w) * local_masks # merge
            updated_frames[:, :l_t, ...] = prop_local_frames

            # ---- feature propagation + Transformer ----
            pred_imgs = self.netG(updated_frames, pred_flows_bi, masks, updated_masks, l_t)
            pred_imgs = pred_imgs.view(b, -1, c, h, w)

            # get the local frames
            pred_local_frames = pred_imgs[:, :l_t, ...]
            comp_local_frames = gt_local_frames * (1. - local_masks) +  pred_local_frames * local_masks
            comp_imgs = frames * (1. - masks) + pred_imgs * masks

            gen_loss = 0
            dis_loss = 0
            # optimize net_g
            if not self.config['model']['no_dis']:
                for p in self.netD.parameters():
                    p.requires_grad = False

            self.optimG.zero_grad()

            # generator l1 loss
            hole_loss = self.l1_loss(pred_imgs * masks, frames * masks)
            hole_loss = hole_loss / torch.mean(masks) * self.config['losses']['hole_weight']
            gen_loss += hole_loss
            self.add_summary(self.gen_writer, 'loss/hole_loss', hole_loss.item())

            valid_loss = self.l1_loss(pred_imgs * (1 - masks), frames * (1 - masks))
            valid_loss = valid_loss / torch.mean(1-masks) * self.config['losses']['valid_weight']
            gen_loss += valid_loss
            self.add_summary(self.gen_writer, 'loss/valid_loss', valid_loss.item())

            # perceptual loss
            if self.config['losses']['perceptual_weight'] > 0:
                perc_loss = self.perc_loss(pred_imgs.view(-1,3,h,w), frames.view(-1,3,h,w))[0] * self.config['losses']['perceptual_weight']
                gen_loss += perc_loss
                self.add_summary(self.gen_writer, 'loss/perc_loss', perc_loss.item())

            # gan loss
            if not self.config['model']['no_dis']:
                # generator adversarial loss
                gen_clip = self.netD(comp_imgs)
                gan_loss = self.adversarial_loss(gen_clip, True, False)
                gan_loss = gan_loss * self.config['losses']['adversarial_weight']
                gen_loss += gan_loss
                self.add_summary(self.gen_writer, 'loss/gan_loss', gan_loss.item())
            gen_loss.backward()
            self.optimG.step()

            if not self.config['model']['no_dis']:
                # optimize net_d
                for p in self.netD.parameters():
                    p.requires_grad = True
                self.optimD.zero_grad()

                # discriminator adversarial loss
                real_clip = self.netD(frames)
                fake_clip = self.netD(comp_imgs.detach())
                dis_real_loss = self.adversarial_loss(real_clip, True, True)
                dis_fake_loss = self.adversarial_loss(fake_clip, False, True)
                dis_loss += (dis_real_loss + dis_fake_loss) / 2
                self.add_summary(self.dis_writer, 'loss/dis_vid_real', dis_real_loss.item())
                self.add_summary(self.dis_writer, 'loss/dis_vid_fake', dis_fake_loss.item())
                dis_loss.backward()
                self.optimD.step()

            self.update_learning_rate()

            # write image to tensorboard
            if self.iteration % 200 == 0:
                # img to cpu
                t = 0
                gt_local_frames_cpu = ((gt_local_frames.view(b,-1,3,h,w) + 1)/2.0).cpu()
                masked_local_frames = ((masked_local_frames.view(b,-1,3,h,w) + 1)/2.0).cpu()
                prop_local_frames_cpu = ((prop_local_frames.view(b,-1,3,h,w) + 1)/2.0).cpu()
                pred_local_frames_cpu = ((pred_local_frames.view(b,-1,3,h,w) + 1)/2.0).cpu()
                img_results = torch.cat([masked_local_frames[0][t], gt_local_frames_cpu[0][t], 
                                        prop_local_frames_cpu[0][t], pred_local_frames_cpu[0][t]], 1)
                img_results = torchvision.utils.make_grid(img_results, nrow=1, normalize=True)
                if self.gen_writer is not None:
                    self.gen_writer.add_image(f'img/img:inp-gt-res-{t}', img_results, self.iteration)

                t = 5
                if masked_local_frames.shape[1] > 5:
                    img_results = torch.cat([masked_local_frames[0][t], gt_local_frames_cpu[0][t], 
                                            prop_local_frames_cpu[0][t], pred_local_frames_cpu[0][t]], 1)
                    img_results = torchvision.utils.make_grid(img_results, nrow=1, normalize=True)
                    if self.gen_writer is not None:
                        self.gen_writer.add_image(f'img/img:inp-gt-res-{t}', img_results, self.iteration)

                    # flow to cpu
                    gt_flows_forward_cpu = flow_to_image(gt_flows_bi[0][0]).cpu()
                    masked_flows_forward_cpu = (gt_flows_forward_cpu[0] * (1-local_masks[0][0].cpu())).to(gt_flows_forward_cpu)
                    pred_flows_forward_cpu = flow_to_image(pred_flows_bi[0][0]).cpu()

                    flow_results = torch.cat([gt_flows_forward_cpu[0], masked_flows_forward_cpu, pred_flows_forward_cpu[0]], 1)
                    if self.gen_writer is not None:
                        self.gen_writer.add_image('img/flow:gt-pred', flow_results, self.iteration)

            # console logs
            if self.config['global_rank'] == 0:
                pbar.update(1)
                if not self.config['model']['no_dis']:
                    pbar.set_description((f"d: {dis_loss.item():.3f}; "
                                          f"hole: {hole_loss.item():.3f}; "
                                          f"valid: {valid_loss.item():.3f}"))
                else:
                    pbar.set_description((f"hole: {hole_loss.item():.3f}; "
                                          f"valid: {valid_loss.item():.3f}"))

                if self.iteration % self.train_args['log_freq'] == 0:
                    if not self.config['model']['no_dis']:
                        logging.info(f"[Iter {self.iteration}] "
                                     f"d: {dis_loss.item():.4f}; "
                                     f"hole: {hole_loss.item():.4f}; "
                                     f"valid: {valid_loss.item():.4f}")
                    else:
                        logging.info(f"[Iter {self.iteration}] "
                                     f"hole: {hole_loss.item():.4f}; "
                                     f"valid: {valid_loss.item():.4f}")

            # saving models
            if self.iteration % self.train_args['save_freq'] == 0:
                self.save(int(self.iteration))

            if self.iteration > self.train_args['iterations']:
                break

            train_data = self.prefetcher.next()