Spaces:
Running
on
A10G
Running
on
A10G
File size: 20,697 Bytes
320e465 87ca85b 320e465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
# -*- coding: utf-8 -*-
import os
import cv2
import argparse
import imageio
import numpy as np
import scipy.ndimage
from PIL import Image
from tqdm import tqdm
import torch
import torchvision
from model.modules.flow_comp_raft import RAFT_bi
from model.recurrent_flow_completion import RecurrentFlowCompleteNet
from model.propainter import InpaintGenerator
from utils.download_util import load_file_from_url
from core.utils import to_tensors
from model.misc import get_device
import warnings
warnings.filterwarnings("ignore")
pretrain_model_url = 'https://github.com/sczhou/ProPainter/releases/download/v0.1.0/'
def imwrite(img, file_path, params=None, auto_mkdir=True):
if auto_mkdir:
dir_name = os.path.abspath(os.path.dirname(file_path))
os.makedirs(dir_name, exist_ok=True)
return cv2.imwrite(file_path, img, params)
# resize frames
def resize_frames(frames, size=None):
if size is not None:
out_size = size
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
frames = [f.resize(process_size) for f in frames]
else:
out_size = frames[0].size
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
if not out_size == process_size:
frames = [f.resize(process_size) for f in frames]
return frames, process_size, out_size
# read frames from video
def read_frame_from_videos(frame_root):
if frame_root.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path
video_name = os.path.basename(frame_root)[:-4]
vframes, aframes, info = torchvision.io.read_video(filename=frame_root, pts_unit='sec') # RGB
frames = list(vframes.numpy())
frames = [Image.fromarray(f) for f in frames]
fps = info['video_fps']
else:
video_name = os.path.basename(frame_root)
frames = []
fr_lst = sorted(os.listdir(frame_root))
for fr in fr_lst:
frame = cv2.imread(os.path.join(frame_root, fr))
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
frames.append(frame)
fps = None
size = frames[0].size
return frames, fps, size, video_name
def binary_mask(mask, th=0.1):
mask[mask>th] = 1
mask[mask<=th] = 0
return mask
# read frame-wise masks
def read_mask(mpath, length, size, flow_mask_dilates=8, mask_dilates=5):
masks_img = []
masks_dilated = []
flow_masks = []
if mpath.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path
masks_img = [Image.open(mpath)]
else:
mnames = sorted(os.listdir(mpath))
for mp in mnames:
masks_img.append(Image.open(os.path.join(mpath, mp)))
for mask_img in masks_img:
if size is not None:
mask_img = mask_img.resize(size, Image.NEAREST)
mask_img = np.array(mask_img.convert('L'))
# Dilate 8 pixel so that all known pixel is trustworthy
if flow_mask_dilates > 0:
flow_mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=flow_mask_dilates).astype(np.uint8)
else:
flow_mask_img = binary_mask(mask_img).astype(np.uint8)
# Close the small holes inside the foreground objects
# flow_mask_img = cv2.morphologyEx(flow_mask_img, cv2.MORPH_CLOSE, np.ones((21, 21),np.uint8)).astype(bool)
# flow_mask_img = scipy.ndimage.binary_fill_holes(flow_mask_img).astype(np.uint8)
flow_masks.append(Image.fromarray(flow_mask_img * 255))
if mask_dilates > 0:
mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=mask_dilates).astype(np.uint8)
else:
mask_img = binary_mask(mask_img).astype(np.uint8)
masks_dilated.append(Image.fromarray(mask_img * 255))
if len(masks_img) == 1:
flow_masks = flow_masks * length
masks_dilated = masks_dilated * length
return flow_masks, masks_dilated
def extrapolation(video_ori, scale):
"""Prepares the data for video outpainting.
"""
nFrame = len(video_ori)
imgW, imgH = video_ori[0].size
# Defines new FOV.
imgH_extr = int(scale[0] * imgH)
imgW_extr = int(scale[1] * imgW)
imgH_extr = imgH_extr - imgH_extr % 8
imgW_extr = imgW_extr - imgW_extr % 8
H_start = int((imgH_extr - imgH) / 2)
W_start = int((imgW_extr - imgW) / 2)
# Extrapolates the FOV for video.
frames = []
for v in video_ori:
frame = np.zeros(((imgH_extr, imgW_extr, 3)), dtype=np.uint8)
frame[H_start: H_start + imgH, W_start: W_start + imgW, :] = v
frames.append(Image.fromarray(frame))
# Generates the mask for missing region.
masks_dilated = []
flow_masks = []
dilate_h = 4 if H_start > 10 else 0
dilate_w = 4 if W_start > 10 else 0
mask = np.ones(((imgH_extr, imgW_extr)), dtype=np.uint8)
mask[H_start+dilate_h: H_start+imgH-dilate_h,
W_start+dilate_w: W_start+imgW-dilate_w] = 0
flow_masks.append(Image.fromarray(mask * 255))
mask[H_start: H_start+imgH, W_start: W_start+imgW] = 0
masks_dilated.append(Image.fromarray(mask * 255))
flow_masks = flow_masks * nFrame
masks_dilated = masks_dilated * nFrame
return frames, flow_masks, masks_dilated, (imgW_extr, imgH_extr)
def get_ref_index(mid_neighbor_id, neighbor_ids, length, ref_stride=10, ref_num=-1):
ref_index = []
if ref_num == -1:
for i in range(0, length, ref_stride):
if i not in neighbor_ids:
ref_index.append(i)
else:
start_idx = max(0, mid_neighbor_id - ref_stride * (ref_num // 2))
end_idx = min(length, mid_neighbor_id + ref_stride * (ref_num // 2))
for i in range(start_idx, end_idx, ref_stride):
if i not in neighbor_ids:
if len(ref_index) > ref_num:
break
ref_index.append(i)
return ref_index
if __name__ == '__main__':
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = get_device()
parser = argparse.ArgumentParser()
parser.add_argument(
'-i', '--video', type=str, default='inputs/object_removal/bmx-trees', help='Path of the input video or image folder.')
parser.add_argument(
'-m', '--mask', type=str, default='inputs/object_removal/bmx-trees_mask', help='Path of the mask(s) or mask folder.')
parser.add_argument(
'-o', '--output', type=str, default='results', help='Output folder. Default: results')
parser.add_argument(
"--resize_ratio", type=float, default=1.0, help='Resize scale for processing video.')
parser.add_argument(
'--height', type=int, default=-1, help='Height of the processing video.')
parser.add_argument(
'--width', type=int, default=-1, help='Width of the processing video.')
parser.add_argument(
'--mask_dilation', type=int, default=4, help='Mask dilation for video and flow masking.')
parser.add_argument(
"--ref_stride", type=int, default=10, help='Stride of global reference frames.')
parser.add_argument(
"--neighbor_length", type=int, default=10, help='Length of local neighboring frames.')
parser.add_argument(
"--subvideo_length", type=int, default=80, help='Length of sub-video for long video inference.')
parser.add_argument(
"--raft_iter", type=int, default=20, help='Iterations for RAFT inference.')
parser.add_argument(
'--mode', default='video_inpainting', choices=['video_inpainting', 'video_outpainting'], help="Modes: video_inpainting / video_outpainting")
parser.add_argument(
'--scale_h', type=float, default=1.0, help='Outpainting scale of height for video_outpainting mode.')
parser.add_argument(
'--scale_w', type=float, default=1.2, help='Outpainting scale of width for video_outpainting mode.')
parser.add_argument(
'--save_fps', type=int, default=24, help='Frame per second. Default: 24')
parser.add_argument(
'--save_frames', action='store_true', help='Save output frames. Default: False')
parser.add_argument(
'--fp16', action='store_true', help='Use fp16 (half precision) during inference. Default: fp32 (single precision).')
args = parser.parse_args()
# Use fp16 precision during inference to reduce running memory cost
use_half = True if args.fp16 else False
if device == torch.device('cpu'):
use_half = False
frames, fps, size, video_name = read_frame_from_videos(args.video)
if not args.width == -1 and not args.height == -1:
size = (args.width, args.height)
if not args.resize_ratio == 1.0:
size = (int(args.resize_ratio * size[0]), int(args.resize_ratio * size[1]))
frames, size, out_size = resize_frames(frames, size)
fps = args.save_fps if fps is None else fps
save_root = os.path.join(args.output, video_name)
if not os.path.exists(save_root):
os.makedirs(save_root, exist_ok=True)
if args.mode == 'video_inpainting':
frames_len = len(frames)
flow_masks, masks_dilated = read_mask(args.mask, frames_len, size,
flow_mask_dilates=args.mask_dilation,
mask_dilates=args.mask_dilation)
w, h = size
elif args.mode == 'video_outpainting':
assert args.scale_h is not None and args.scale_w is not None, 'Please provide a outpainting scale (s_h, s_w).'
frames, flow_masks, masks_dilated, size = extrapolation(frames, (args.scale_h, args.scale_w))
w, h = size
else:
raise NotImplementedError
# for saving the masked frames or video
masked_frame_for_save = []
for i in range(len(frames)):
mask_ = np.expand_dims(np.array(masks_dilated[i]),2).repeat(3, axis=2)/255.
img = np.array(frames[i])
green = np.zeros([h, w, 3])
green[:,:,1] = 255
alpha = 0.6
# alpha = 1.0
fuse_img = (1-alpha)*img + alpha*green
fuse_img = mask_ * fuse_img + (1-mask_)*img
masked_frame_for_save.append(fuse_img.astype(np.uint8))
frames_inp = [np.array(f).astype(np.uint8) for f in frames]
frames = to_tensors()(frames).unsqueeze(0) * 2 - 1
flow_masks = to_tensors()(flow_masks).unsqueeze(0)
masks_dilated = to_tensors()(masks_dilated).unsqueeze(0)
frames, flow_masks, masks_dilated = frames.to(device), flow_masks.to(device), masks_dilated.to(device)
##############################################
# set up RAFT and flow competition model
##############################################
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'raft-things.pth'),
model_dir='weights', progress=True, file_name=None)
fix_raft = RAFT_bi(ckpt_path, device)
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'recurrent_flow_completion.pth'),
model_dir='weights', progress=True, file_name=None)
fix_flow_complete = RecurrentFlowCompleteNet(ckpt_path)
for p in fix_flow_complete.parameters():
p.requires_grad = False
fix_flow_complete.to(device)
fix_flow_complete.eval()
##############################################
# set up ProPainter model
##############################################
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'ProPainter.pth'),
model_dir='weights', progress=True, file_name=None)
model = InpaintGenerator(model_path=ckpt_path).to(device)
model.eval()
##############################################
# ProPainter inference
##############################################
video_length = frames.size(1)
print(f'\nProcessing: {video_name} [{video_length} frames]...')
with torch.no_grad():
# ---- compute flow ----
if frames.size(-1) <= 640:
short_clip_len = 12
elif frames.size(-1) <= 720:
short_clip_len = 8
elif frames.size(-1) <= 1280:
short_clip_len = 4
else:
short_clip_len = 2
# use fp32 for RAFT
if frames.size(1) > short_clip_len:
gt_flows_f_list, gt_flows_b_list = [], []
for f in range(0, video_length, short_clip_len):
end_f = min(video_length, f + short_clip_len)
if f == 0:
flows_f, flows_b = fix_raft(frames[:,f:end_f], iters=args.raft_iter)
else:
flows_f, flows_b = fix_raft(frames[:,f-1:end_f], iters=args.raft_iter)
gt_flows_f_list.append(flows_f)
gt_flows_b_list.append(flows_b)
torch.cuda.empty_cache()
gt_flows_f = torch.cat(gt_flows_f_list, dim=1)
gt_flows_b = torch.cat(gt_flows_b_list, dim=1)
gt_flows_bi = (gt_flows_f, gt_flows_b)
else:
gt_flows_bi = fix_raft(frames, iters=args.raft_iter)
torch.cuda.empty_cache()
if use_half:
frames, flow_masks, masks_dilated = frames.half(), flow_masks.half(), masks_dilated.half()
gt_flows_bi = (gt_flows_bi[0].half(), gt_flows_bi[1].half())
fix_flow_complete = fix_flow_complete.half()
model = model.half()
# ---- complete flow ----
flow_length = gt_flows_bi[0].size(1)
if flow_length > args.subvideo_length:
pred_flows_f, pred_flows_b = [], []
pad_len = 5
for f in range(0, flow_length, args.subvideo_length):
s_f = max(0, f - pad_len)
e_f = min(flow_length, f + args.subvideo_length + pad_len)
pad_len_s = max(0, f) - s_f
pad_len_e = e_f - min(flow_length, f + args.subvideo_length)
pred_flows_bi_sub, _ = fix_flow_complete.forward_bidirect_flow(
(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]),
flow_masks[:, s_f:e_f+1])
pred_flows_bi_sub = fix_flow_complete.combine_flow(
(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]),
pred_flows_bi_sub,
flow_masks[:, s_f:e_f+1])
pred_flows_f.append(pred_flows_bi_sub[0][:, pad_len_s:e_f-s_f-pad_len_e])
pred_flows_b.append(pred_flows_bi_sub[1][:, pad_len_s:e_f-s_f-pad_len_e])
torch.cuda.empty_cache()
pred_flows_f = torch.cat(pred_flows_f, dim=1)
pred_flows_b = torch.cat(pred_flows_b, dim=1)
pred_flows_bi = (pred_flows_f, pred_flows_b)
else:
pred_flows_bi, _ = fix_flow_complete.forward_bidirect_flow(gt_flows_bi, flow_masks)
pred_flows_bi = fix_flow_complete.combine_flow(gt_flows_bi, pred_flows_bi, flow_masks)
torch.cuda.empty_cache()
# ---- image propagation ----
masked_frames = frames * (1 - masks_dilated)
subvideo_length_img_prop = min(100, args.subvideo_length) # ensure a minimum of 100 frames for image propagation
if video_length > subvideo_length_img_prop:
updated_frames, updated_masks = [], []
pad_len = 10
for f in range(0, video_length, subvideo_length_img_prop):
s_f = max(0, f - pad_len)
e_f = min(video_length, f + subvideo_length_img_prop + pad_len)
pad_len_s = max(0, f) - s_f
pad_len_e = e_f - min(video_length, f + subvideo_length_img_prop)
b, t, _, _, _ = masks_dilated[:, s_f:e_f].size()
pred_flows_bi_sub = (pred_flows_bi[0][:, s_f:e_f-1], pred_flows_bi[1][:, s_f:e_f-1])
prop_imgs_sub, updated_local_masks_sub = model.img_propagation(masked_frames[:, s_f:e_f],
pred_flows_bi_sub,
masks_dilated[:, s_f:e_f],
'nearest')
updated_frames_sub = frames[:, s_f:e_f] * (1 - masks_dilated[:, s_f:e_f]) + \
prop_imgs_sub.view(b, t, 3, h, w) * masks_dilated[:, s_f:e_f]
updated_masks_sub = updated_local_masks_sub.view(b, t, 1, h, w)
updated_frames.append(updated_frames_sub[:, pad_len_s:e_f-s_f-pad_len_e])
updated_masks.append(updated_masks_sub[:, pad_len_s:e_f-s_f-pad_len_e])
torch.cuda.empty_cache()
updated_frames = torch.cat(updated_frames, dim=1)
updated_masks = torch.cat(updated_masks, dim=1)
else:
b, t, _, _, _ = masks_dilated.size()
prop_imgs, updated_local_masks = model.img_propagation(masked_frames, pred_flows_bi, masks_dilated, 'nearest')
updated_frames = frames * (1 - masks_dilated) + prop_imgs.view(b, t, 3, h, w) * masks_dilated
updated_masks = updated_local_masks.view(b, t, 1, h, w)
torch.cuda.empty_cache()
ori_frames = frames_inp
comp_frames = [None] * video_length
neighbor_stride = args.neighbor_length // 2
if video_length > args.subvideo_length:
ref_num = args.subvideo_length // args.ref_stride
else:
ref_num = -1
# ---- feature propagation + transformer ----
for f in tqdm(range(0, video_length, neighbor_stride)):
neighbor_ids = [
i for i in range(max(0, f - neighbor_stride),
min(video_length, f + neighbor_stride + 1))
]
ref_ids = get_ref_index(f, neighbor_ids, video_length, args.ref_stride, ref_num)
selected_imgs = updated_frames[:, neighbor_ids + ref_ids, :, :, :]
selected_masks = masks_dilated[:, neighbor_ids + ref_ids, :, :, :]
selected_update_masks = updated_masks[:, neighbor_ids + ref_ids, :, :, :]
selected_pred_flows_bi = (pred_flows_bi[0][:, neighbor_ids[:-1], :, :, :], pred_flows_bi[1][:, neighbor_ids[:-1], :, :, :])
with torch.no_grad():
# 1.0 indicates mask
l_t = len(neighbor_ids)
# pred_img = selected_imgs # results of image propagation
pred_img = model(selected_imgs, selected_pred_flows_bi, selected_masks, selected_update_masks, l_t)
pred_img = pred_img.view(-1, 3, h, w)
pred_img = (pred_img + 1) / 2
pred_img = pred_img.cpu().permute(0, 2, 3, 1).numpy() * 255
binary_masks = masks_dilated[0, neighbor_ids, :, :, :].cpu().permute(
0, 2, 3, 1).numpy().astype(np.uint8)
for i in range(len(neighbor_ids)):
idx = neighbor_ids[i]
img = np.array(pred_img[i]).astype(np.uint8) * binary_masks[i] \
+ ori_frames[idx] * (1 - binary_masks[i])
if comp_frames[idx] is None:
comp_frames[idx] = img
else:
comp_frames[idx] = comp_frames[idx].astype(np.float32) * 0.5 + img.astype(np.float32) * 0.5
comp_frames[idx] = comp_frames[idx].astype(np.uint8)
torch.cuda.empty_cache()
# save each frame
if args.save_frames:
for idx in range(video_length):
f = comp_frames[idx]
f = cv2.resize(f, out_size, interpolation = cv2.INTER_CUBIC)
f = cv2.cvtColor(f, cv2.COLOR_BGR2RGB)
img_save_root = os.path.join(save_root, 'frames', str(idx).zfill(4)+'.png')
imwrite(f, img_save_root)
# if args.mode == 'video_outpainting':
# comp_frames = [i[10:-10,10:-10] for i in comp_frames]
# masked_frame_for_save = [i[10:-10,10:-10] for i in masked_frame_for_save]
# save videos frame
masked_frame_for_save = [cv2.resize(f, out_size) for f in masked_frame_for_save]
comp_frames = [cv2.resize(f, out_size) for f in comp_frames]
imageio.mimwrite(os.path.join(save_root, 'masked_in.mp4'), masked_frame_for_save, fps=fps, quality=7)
imageio.mimwrite(os.path.join(save_root, 'inpaint_out.mp4'), comp_frames, fps=fps, quality=7)
print(f'\nAll results are saved in {save_root}')
torch.cuda.empty_cache() |