Spaces:
Running
on
A10G
Running
on
A10G
File size: 23,632 Bytes
320e465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
import os
import glob
import logging
import importlib
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from core.prefetch_dataloader import PrefetchDataLoader, CPUPrefetcher
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import torchvision
from torch.utils.tensorboard import SummaryWriter
from core.lr_scheduler import MultiStepRestartLR, CosineAnnealingRestartLR
from core.loss import AdversarialLoss, PerceptualLoss, LPIPSLoss
from core.dataset import TrainDataset
from model.modules.flow_comp_raft import RAFT_bi, FlowLoss, EdgeLoss
from model.recurrent_flow_completion import RecurrentFlowCompleteNet
from RAFT.utils.flow_viz_pt import flow_to_image
class Trainer:
def __init__(self, config):
self.config = config
self.epoch = 0
self.iteration = 0
self.num_local_frames = config['train_data_loader']['num_local_frames']
self.num_ref_frames = config['train_data_loader']['num_ref_frames']
# setup data set and data loader
self.train_dataset = TrainDataset(config['train_data_loader'])
self.train_sampler = None
self.train_args = config['trainer']
if config['distributed']:
self.train_sampler = DistributedSampler(
self.train_dataset,
num_replicas=config['world_size'],
rank=config['global_rank'])
dataloader_args = dict(
dataset=self.train_dataset,
batch_size=self.train_args['batch_size'] // config['world_size'],
shuffle=(self.train_sampler is None),
num_workers=self.train_args['num_workers'],
sampler=self.train_sampler,
drop_last=True)
self.train_loader = PrefetchDataLoader(self.train_args['num_prefetch_queue'], **dataloader_args)
self.prefetcher = CPUPrefetcher(self.train_loader)
# set loss functions
self.adversarial_loss = AdversarialLoss(type=self.config['losses']['GAN_LOSS'])
self.adversarial_loss = self.adversarial_loss.to(self.config['device'])
self.l1_loss = nn.L1Loss()
# self.perc_loss = PerceptualLoss(
# layer_weights={'conv3_4': 0.25, 'conv4_4': 0.25, 'conv5_4': 0.5},
# use_input_norm=True,
# range_norm=True,
# criterion='l1'
# ).to(self.config['device'])
if self.config['losses']['perceptual_weight'] > 0:
self.perc_loss = LPIPSLoss(use_input_norm=True, range_norm=True).to(self.config['device'])
# self.flow_comp_loss = FlowCompletionLoss().to(self.config['device'])
# self.flow_comp_loss = FlowCompletionLoss(self.config['device'])
# set raft
self.fix_raft = RAFT_bi(device = self.config['device'])
self.fix_flow_complete = RecurrentFlowCompleteNet('/mnt/lustre/sczhou/VQGANs/CodeMOVI/experiments_model/recurrent_flow_completion_v5_train_flowcomp_v5/gen_760000.pth')
for p in self.fix_flow_complete.parameters():
p.requires_grad = False
self.fix_flow_complete.to(self.config['device'])
self.fix_flow_complete.eval()
# self.flow_loss = FlowLoss()
# setup models including generator and discriminator
net = importlib.import_module('model.' + config['model']['net'])
self.netG = net.InpaintGenerator()
# print(self.netG)
self.netG = self.netG.to(self.config['device'])
if not self.config['model'].get('no_dis', False):
if self.config['model'].get('dis_2d', False):
self.netD = net.Discriminator_2D(
in_channels=3,
use_sigmoid=config['losses']['GAN_LOSS'] != 'hinge')
else:
self.netD = net.Discriminator(
in_channels=3,
use_sigmoid=config['losses']['GAN_LOSS'] != 'hinge')
self.netD = self.netD.to(self.config['device'])
self.interp_mode = self.config['model']['interp_mode']
# setup optimizers and schedulers
self.setup_optimizers()
self.setup_schedulers()
self.load()
if config['distributed']:
self.netG = DDP(self.netG,
device_ids=[self.config['local_rank']],
output_device=self.config['local_rank'],
broadcast_buffers=True,
find_unused_parameters=True)
if not self.config['model']['no_dis']:
self.netD = DDP(self.netD,
device_ids=[self.config['local_rank']],
output_device=self.config['local_rank'],
broadcast_buffers=True,
find_unused_parameters=False)
# set summary writer
self.dis_writer = None
self.gen_writer = None
self.summary = {}
if self.config['global_rank'] == 0 or (not config['distributed']):
if not self.config['model']['no_dis']:
self.dis_writer = SummaryWriter(
os.path.join(config['save_dir'], 'dis'))
self.gen_writer = SummaryWriter(
os.path.join(config['save_dir'], 'gen'))
def setup_optimizers(self):
"""Set up optimizers."""
backbone_params = []
for name, param in self.netG.named_parameters():
if param.requires_grad:
backbone_params.append(param)
else:
print(f'Params {name} will not be optimized.')
optim_params = [
{
'params': backbone_params,
'lr': self.config['trainer']['lr']
},
]
self.optimG = torch.optim.Adam(optim_params,
betas=(self.config['trainer']['beta1'],
self.config['trainer']['beta2']))
if not self.config['model']['no_dis']:
self.optimD = torch.optim.Adam(
self.netD.parameters(),
lr=self.config['trainer']['lr'],
betas=(self.config['trainer']['beta1'],
self.config['trainer']['beta2']))
def setup_schedulers(self):
"""Set up schedulers."""
scheduler_opt = self.config['trainer']['scheduler']
scheduler_type = scheduler_opt.pop('type')
if scheduler_type in ['MultiStepLR', 'MultiStepRestartLR']:
self.scheG = MultiStepRestartLR(
self.optimG,
milestones=scheduler_opt['milestones'],
gamma=scheduler_opt['gamma'])
if not self.config['model']['no_dis']:
self.scheD = MultiStepRestartLR(
self.optimD,
milestones=scheduler_opt['milestones'],
gamma=scheduler_opt['gamma'])
elif scheduler_type == 'CosineAnnealingRestartLR':
self.scheG = CosineAnnealingRestartLR(
self.optimG,
periods=scheduler_opt['periods'],
restart_weights=scheduler_opt['restart_weights'],
eta_min=scheduler_opt['eta_min'])
if not self.config['model']['no_dis']:
self.scheD = CosineAnnealingRestartLR(
self.optimD,
periods=scheduler_opt['periods'],
restart_weights=scheduler_opt['restart_weights'],
eta_min=scheduler_opt['eta_min'])
else:
raise NotImplementedError(
f'Scheduler {scheduler_type} is not implemented yet.')
def update_learning_rate(self):
"""Update learning rate."""
self.scheG.step()
if not self.config['model']['no_dis']:
self.scheD.step()
def get_lr(self):
"""Get current learning rate."""
return self.optimG.param_groups[0]['lr']
def add_summary(self, writer, name, val):
"""Add tensorboard summary."""
if name not in self.summary:
self.summary[name] = 0
self.summary[name] += val
n = self.train_args['log_freq']
if writer is not None and self.iteration % n == 0:
writer.add_scalar(name, self.summary[name] / n, self.iteration)
self.summary[name] = 0
def load(self):
"""Load netG (and netD)."""
# get the latest checkpoint
model_path = self.config['save_dir']
# TODO: add resume name
if os.path.isfile(os.path.join(model_path, 'latest.ckpt')):
latest_epoch = open(os.path.join(model_path, 'latest.ckpt'),
'r').read().splitlines()[-1]
else:
ckpts = [
os.path.basename(i).split('.pth')[0]
for i in glob.glob(os.path.join(model_path, '*.pth'))
]
ckpts.sort()
latest_epoch = ckpts[-1][4:] if len(ckpts) > 0 else None
if latest_epoch is not None:
gen_path = os.path.join(model_path,
f'gen_{int(latest_epoch):06d}.pth')
dis_path = os.path.join(model_path,
f'dis_{int(latest_epoch):06d}.pth')
opt_path = os.path.join(model_path,
f'opt_{int(latest_epoch):06d}.pth')
if self.config['global_rank'] == 0:
print(f'Loading model from {gen_path}...')
dataG = torch.load(gen_path, map_location=self.config['device'])
self.netG.load_state_dict(dataG)
if not self.config['model']['no_dis'] and self.config['model']['load_d']:
dataD = torch.load(dis_path, map_location=self.config['device'])
self.netD.load_state_dict(dataD)
data_opt = torch.load(opt_path, map_location=self.config['device'])
self.optimG.load_state_dict(data_opt['optimG'])
# self.scheG.load_state_dict(data_opt['scheG'])
if not self.config['model']['no_dis'] and self.config['model']['load_d']:
self.optimD.load_state_dict(data_opt['optimD'])
# self.scheD.load_state_dict(data_opt['scheD'])
self.epoch = data_opt['epoch']
self.iteration = data_opt['iteration']
else:
gen_path = self.config['trainer'].get('gen_path', None)
dis_path = self.config['trainer'].get('dis_path', None)
opt_path = self.config['trainer'].get('opt_path', None)
if gen_path is not None:
if self.config['global_rank'] == 0:
print(f'Loading Gen-Net from {gen_path}...')
dataG = torch.load(gen_path, map_location=self.config['device'])
self.netG.load_state_dict(dataG)
if dis_path is not None and not self.config['model']['no_dis'] and self.config['model']['load_d']:
if self.config['global_rank'] == 0:
print(f'Loading Dis-Net from {dis_path}...')
dataD = torch.load(dis_path, map_location=self.config['device'])
self.netD.load_state_dict(dataD)
if opt_path is not None:
data_opt = torch.load(opt_path, map_location=self.config['device'])
self.optimG.load_state_dict(data_opt['optimG'])
self.scheG.load_state_dict(data_opt['scheG'])
if not self.config['model']['no_dis'] and self.config['model']['load_d']:
self.optimD.load_state_dict(data_opt['optimD'])
self.scheD.load_state_dict(data_opt['scheD'])
else:
if self.config['global_rank'] == 0:
print('Warnning: There is no trained model found.'
'An initialized model will be used.')
def save(self, it):
"""Save parameters every eval_epoch"""
if self.config['global_rank'] == 0:
# configure path
gen_path = os.path.join(self.config['save_dir'],
f'gen_{it:06d}.pth')
dis_path = os.path.join(self.config['save_dir'],
f'dis_{it:06d}.pth')
opt_path = os.path.join(self.config['save_dir'],
f'opt_{it:06d}.pth')
print(f'\nsaving model to {gen_path} ...')
# remove .module for saving
if isinstance(self.netG, torch.nn.DataParallel) or isinstance(self.netG, DDP):
netG = self.netG.module
if not self.config['model']['no_dis']:
netD = self.netD.module
else:
netG = self.netG
if not self.config['model']['no_dis']:
netD = self.netD
# save checkpoints
torch.save(netG.state_dict(), gen_path)
if not self.config['model']['no_dis']:
torch.save(netD.state_dict(), dis_path)
torch.save(
{
'epoch': self.epoch,
'iteration': self.iteration,
'optimG': self.optimG.state_dict(),
'optimD': self.optimD.state_dict(),
'scheG': self.scheG.state_dict(),
'scheD': self.scheD.state_dict()
}, opt_path)
else:
torch.save(
{
'epoch': self.epoch,
'iteration': self.iteration,
'optimG': self.optimG.state_dict(),
'scheG': self.scheG.state_dict()
}, opt_path)
latest_path = os.path.join(self.config['save_dir'], 'latest.ckpt')
os.system(f"echo {it:06d} > {latest_path}")
def train(self):
"""training entry"""
pbar = range(int(self.train_args['iterations']))
if self.config['global_rank'] == 0:
pbar = tqdm(pbar,
initial=self.iteration,
dynamic_ncols=True,
smoothing=0.01)
os.makedirs('logs', exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s %(filename)s[line:%(lineno)d]"
"%(levelname)s %(message)s",
datefmt="%a, %d %b %Y %H:%M:%S",
filename=f"logs/{self.config['save_dir'].split('/')[-1]}.log",
filemode='w')
while True:
self.epoch += 1
self.prefetcher.reset()
if self.config['distributed']:
self.train_sampler.set_epoch(self.epoch)
self._train_epoch(pbar)
if self.iteration > self.train_args['iterations']:
break
print('\nEnd training....')
def _train_epoch(self, pbar):
"""Process input and calculate loss every training epoch"""
device = self.config['device']
train_data = self.prefetcher.next()
while train_data is not None:
self.iteration += 1
frames, masks, flows_f, flows_b, _ = train_data
frames, masks = frames.to(device), masks.to(device).float()
l_t = self.num_local_frames
b, t, c, h, w = frames.size()
gt_local_frames = frames[:, :l_t, ...]
local_masks = masks[:, :l_t, ...].contiguous()
masked_frames = frames * (1 - masks)
masked_local_frames = masked_frames[:, :l_t, ...]
# get gt optical flow
if flows_f[0] == 'None' or flows_b[0] == 'None':
gt_flows_bi = self.fix_raft(gt_local_frames)
else:
gt_flows_bi = (flows_f.to(device), flows_b.to(device))
# ---- complete flow ----
pred_flows_bi, _ = self.fix_flow_complete.forward_bidirect_flow(gt_flows_bi, local_masks)
pred_flows_bi = self.fix_flow_complete.combine_flow(gt_flows_bi, pred_flows_bi, local_masks)
# pred_flows_bi = gt_flows_bi
# ---- image propagation ----
prop_imgs, updated_local_masks = self.netG.module.img_propagation(masked_local_frames, pred_flows_bi, local_masks, interpolation=self.interp_mode)
updated_masks = masks.clone()
updated_masks[:, :l_t, ...] = updated_local_masks.view(b, l_t, 1, h, w)
updated_frames = masked_frames.clone()
prop_local_frames = gt_local_frames * (1-local_masks) + prop_imgs.view(b, l_t, 3, h, w) * local_masks # merge
updated_frames[:, :l_t, ...] = prop_local_frames
# ---- feature propagation + Transformer ----
pred_imgs = self.netG(updated_frames, pred_flows_bi, masks, updated_masks, l_t)
pred_imgs = pred_imgs.view(b, -1, c, h, w)
# get the local frames
pred_local_frames = pred_imgs[:, :l_t, ...]
comp_local_frames = gt_local_frames * (1. - local_masks) + pred_local_frames * local_masks
comp_imgs = frames * (1. - masks) + pred_imgs * masks
gen_loss = 0
dis_loss = 0
# optimize net_g
if not self.config['model']['no_dis']:
for p in self.netD.parameters():
p.requires_grad = False
self.optimG.zero_grad()
# generator l1 loss
hole_loss = self.l1_loss(pred_imgs * masks, frames * masks)
hole_loss = hole_loss / torch.mean(masks) * self.config['losses']['hole_weight']
gen_loss += hole_loss
self.add_summary(self.gen_writer, 'loss/hole_loss', hole_loss.item())
valid_loss = self.l1_loss(pred_imgs * (1 - masks), frames * (1 - masks))
valid_loss = valid_loss / torch.mean(1-masks) * self.config['losses']['valid_weight']
gen_loss += valid_loss
self.add_summary(self.gen_writer, 'loss/valid_loss', valid_loss.item())
# perceptual loss
if self.config['losses']['perceptual_weight'] > 0:
perc_loss = self.perc_loss(pred_imgs.view(-1,3,h,w), frames.view(-1,3,h,w))[0] * self.config['losses']['perceptual_weight']
gen_loss += perc_loss
self.add_summary(self.gen_writer, 'loss/perc_loss', perc_loss.item())
# gan loss
if not self.config['model']['no_dis']:
# generator adversarial loss
gen_clip = self.netD(comp_imgs)
gan_loss = self.adversarial_loss(gen_clip, True, False)
gan_loss = gan_loss * self.config['losses']['adversarial_weight']
gen_loss += gan_loss
self.add_summary(self.gen_writer, 'loss/gan_loss', gan_loss.item())
gen_loss.backward()
self.optimG.step()
if not self.config['model']['no_dis']:
# optimize net_d
for p in self.netD.parameters():
p.requires_grad = True
self.optimD.zero_grad()
# discriminator adversarial loss
real_clip = self.netD(frames)
fake_clip = self.netD(comp_imgs.detach())
dis_real_loss = self.adversarial_loss(real_clip, True, True)
dis_fake_loss = self.adversarial_loss(fake_clip, False, True)
dis_loss += (dis_real_loss + dis_fake_loss) / 2
self.add_summary(self.dis_writer, 'loss/dis_vid_real', dis_real_loss.item())
self.add_summary(self.dis_writer, 'loss/dis_vid_fake', dis_fake_loss.item())
dis_loss.backward()
self.optimD.step()
self.update_learning_rate()
# write image to tensorboard
if self.iteration % 200 == 0:
# img to cpu
t = 0
gt_local_frames_cpu = ((gt_local_frames.view(b,-1,3,h,w) + 1)/2.0).cpu()
masked_local_frames = ((masked_local_frames.view(b,-1,3,h,w) + 1)/2.0).cpu()
prop_local_frames_cpu = ((prop_local_frames.view(b,-1,3,h,w) + 1)/2.0).cpu()
pred_local_frames_cpu = ((pred_local_frames.view(b,-1,3,h,w) + 1)/2.0).cpu()
img_results = torch.cat([masked_local_frames[0][t], gt_local_frames_cpu[0][t],
prop_local_frames_cpu[0][t], pred_local_frames_cpu[0][t]], 1)
img_results = torchvision.utils.make_grid(img_results, nrow=1, normalize=True)
if self.gen_writer is not None:
self.gen_writer.add_image(f'img/img:inp-gt-res-{t}', img_results, self.iteration)
t = 5
if masked_local_frames.shape[1] > 5:
img_results = torch.cat([masked_local_frames[0][t], gt_local_frames_cpu[0][t],
prop_local_frames_cpu[0][t], pred_local_frames_cpu[0][t]], 1)
img_results = torchvision.utils.make_grid(img_results, nrow=1, normalize=True)
if self.gen_writer is not None:
self.gen_writer.add_image(f'img/img:inp-gt-res-{t}', img_results, self.iteration)
# flow to cpu
gt_flows_forward_cpu = flow_to_image(gt_flows_bi[0][0]).cpu()
masked_flows_forward_cpu = (gt_flows_forward_cpu[0] * (1-local_masks[0][0].cpu())).to(gt_flows_forward_cpu)
pred_flows_forward_cpu = flow_to_image(pred_flows_bi[0][0]).cpu()
flow_results = torch.cat([gt_flows_forward_cpu[0], masked_flows_forward_cpu, pred_flows_forward_cpu[0]], 1)
if self.gen_writer is not None:
self.gen_writer.add_image('img/flow:gt-pred', flow_results, self.iteration)
# console logs
if self.config['global_rank'] == 0:
pbar.update(1)
if not self.config['model']['no_dis']:
pbar.set_description((f"d: {dis_loss.item():.3f}; "
f"hole: {hole_loss.item():.3f}; "
f"valid: {valid_loss.item():.3f}"))
else:
pbar.set_description((f"hole: {hole_loss.item():.3f}; "
f"valid: {valid_loss.item():.3f}"))
if self.iteration % self.train_args['log_freq'] == 0:
if not self.config['model']['no_dis']:
logging.info(f"[Iter {self.iteration}] "
f"d: {dis_loss.item():.4f}; "
f"hole: {hole_loss.item():.4f}; "
f"valid: {valid_loss.item():.4f}")
else:
logging.info(f"[Iter {self.iteration}] "
f"hole: {hole_loss.item():.4f}; "
f"valid: {valid_loss.item():.4f}")
# saving models
if self.iteration % self.train_args['save_freq'] == 0:
self.save(int(self.iteration))
if self.iteration > self.train_args['iterations']:
break
train_data = self.prefetcher.next() |