Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, pipeline | |
import torch | |
# Define the model repository | |
REPO_NAME = 'schuler/experimental-JP47D20' | |
# REPO_NAME = 'schuler/experimental-JP47D21-KPhi-3-micro-4k-instruct' | |
# How to cache? | |
def load_model(repo_name): | |
tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True) | |
generator_conf = GenerationConfig.from_pretrained(repo_name) | |
model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True, torch_dtype=torch.bfloat16) | |
return tokenizer, generator_conf, model | |
tokenizer, generator_conf, model = load_model(REPO_NAME) | |
global_error = '' | |
try: | |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
except Exception as e: | |
global_error = f"Failed to load model: {str(e)}" | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
result = 'none' | |
try: | |
# Build the conversation prompt | |
prompt = '' | |
messages = [] | |
if (len(system_message)>0): | |
prompt = "<|assistant|>"+system_message+f"<|end|>\n" | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
for message in messages: | |
role = "<|assistant|>" if message['role'] == 'assistant' else "<|user|>" | |
prompt += f"\n{role}\n{message['content']}\n<|end|>\n" | |
prompt += f"\n<|user|>\n{message}\n<|end|><|assistant|>\n" | |
""" | |
# Generate the response | |
response_output = generator( | |
prompt, | |
generation_config=generator_conf, | |
max_new_tokens=64, | |
do_sample=True, | |
top_p=0.25, | |
repetition_penalty=1.2 | |
) | |
generated_text = response_output[0]['generated_text'] | |
# st.session_state.last_response = generated_text | |
# Extract the assistant's response | |
result = generated_text[len(prompt):].strip() | |
""" | |
result = message+':'+prompt | |
except Exception as error: | |
result = str(error) | |
yield result | |
""" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
""" | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot." + global_error, label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |