|
|
|
import colorsys |
|
import logging |
|
import math |
|
import numpy as np |
|
from enum import Enum, unique |
|
import cv2 |
|
import matplotlib as mpl |
|
import matplotlib.colors as mplc |
|
import matplotlib.figure as mplfigure |
|
import pycocotools.mask as mask_util |
|
import torch |
|
from matplotlib.backends.backend_agg import FigureCanvasAgg |
|
from PIL import Image |
|
|
|
from detectron2.data import MetadataCatalog |
|
from detectron2.structures import BitMasks, Boxes, BoxMode, Keypoints, PolygonMasks, RotatedBoxes |
|
from detectron2.utils.file_io import PathManager |
|
|
|
from detectron2.utils.colormap import random_color |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
__all__ = ["ColorMode", "VisImage", "Visualizer"] |
|
|
|
|
|
_SMALL_OBJECT_AREA_THRESH = 1000 |
|
_LARGE_MASK_AREA_THRESH = 120000 |
|
_OFF_WHITE = (1.0, 1.0, 240.0 / 255) |
|
_BLACK = (0, 0, 0) |
|
_RED = (1.0, 0, 0) |
|
|
|
_KEYPOINT_THRESHOLD = 0.05 |
|
|
|
|
|
@unique |
|
class ColorMode(Enum): |
|
""" |
|
Enum of different color modes to use for instance visualizations. |
|
""" |
|
|
|
IMAGE = 0 |
|
""" |
|
Picks a random color for every instance and overlay segmentations with low opacity. |
|
""" |
|
SEGMENTATION = 1 |
|
""" |
|
Let instances of the same category have similar colors |
|
(from metadata.thing_colors), and overlay them with |
|
high opacity. This provides more attention on the quality of segmentation. |
|
""" |
|
IMAGE_BW = 2 |
|
""" |
|
Same as IMAGE, but convert all areas without masks to gray-scale. |
|
Only available for drawing per-instance mask predictions. |
|
""" |
|
|
|
|
|
class GenericMask: |
|
""" |
|
Attribute: |
|
polygons (list[ndarray]): list[ndarray]: polygons for this mask. |
|
Each ndarray has format [x, y, x, y, ...] |
|
mask (ndarray): a binary mask |
|
""" |
|
|
|
def __init__(self, mask_or_polygons, height, width): |
|
self._mask = self._polygons = self._has_holes = None |
|
self.height = height |
|
self.width = width |
|
|
|
m = mask_or_polygons |
|
if isinstance(m, dict): |
|
|
|
assert "counts" in m and "size" in m |
|
if isinstance(m["counts"], list): |
|
h, w = m["size"] |
|
assert h == height and w == width |
|
m = mask_util.frPyObjects(m, h, w) |
|
self._mask = mask_util.decode(m)[:, :] |
|
return |
|
|
|
if isinstance(m, list): |
|
self._polygons = [np.asarray(x).reshape(-1) for x in m] |
|
return |
|
|
|
if isinstance(m, np.ndarray): |
|
assert m.shape[1] != 2, m.shape |
|
assert m.shape == ( |
|
height, |
|
width, |
|
), f"mask shape: {m.shape}, target dims: {height}, {width}" |
|
self._mask = m.astype("uint8") |
|
return |
|
|
|
raise ValueError("GenericMask cannot handle object {} of type '{}'".format(m, type(m))) |
|
|
|
@property |
|
def mask(self): |
|
if self._mask is None: |
|
self._mask = self.polygons_to_mask(self._polygons) |
|
return self._mask |
|
|
|
@property |
|
def polygons(self): |
|
if self._polygons is None: |
|
self._polygons, self._has_holes = self.mask_to_polygons(self._mask) |
|
return self._polygons |
|
|
|
@property |
|
def has_holes(self): |
|
if self._has_holes is None: |
|
if self._mask is not None: |
|
self._polygons, self._has_holes = self.mask_to_polygons(self._mask) |
|
else: |
|
self._has_holes = False |
|
return self._has_holes |
|
|
|
def mask_to_polygons(self, mask): |
|
|
|
|
|
|
|
|
|
mask = np.ascontiguousarray(mask) |
|
res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) |
|
hierarchy = res[-1] |
|
if hierarchy is None: |
|
return [], False |
|
has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0 |
|
res = res[-2] |
|
res = [x.flatten() for x in res] |
|
|
|
|
|
|
|
res = [x + 0.5 for x in res if len(x) >= 6] |
|
return res, has_holes |
|
|
|
def polygons_to_mask(self, polygons): |
|
rle = mask_util.frPyObjects(polygons, self.height, self.width) |
|
rle = mask_util.merge(rle) |
|
return mask_util.decode(rle)[:, :] |
|
|
|
def area(self): |
|
return self.mask.sum() |
|
|
|
def bbox(self): |
|
p = mask_util.frPyObjects(self.polygons, self.height, self.width) |
|
p = mask_util.merge(p) |
|
bbox = mask_util.toBbox(p) |
|
bbox[2] += bbox[0] |
|
bbox[3] += bbox[1] |
|
return bbox |
|
|
|
|
|
class _PanopticPrediction: |
|
""" |
|
Unify different panoptic annotation/prediction formats |
|
""" |
|
|
|
def __init__(self, panoptic_seg, segments_info, metadata=None): |
|
if segments_info is None: |
|
assert metadata is not None |
|
|
|
|
|
|
|
|
|
label_divisor = metadata.label_divisor |
|
segments_info = [] |
|
for panoptic_label in np.unique(panoptic_seg.numpy()): |
|
if panoptic_label == -1: |
|
|
|
continue |
|
pred_class = panoptic_label // label_divisor |
|
isthing = pred_class in metadata.thing_dataset_id_to_contiguous_id.values() |
|
segments_info.append( |
|
{ |
|
"id": int(panoptic_label), |
|
"category_id": int(pred_class), |
|
"isthing": bool(isthing), |
|
} |
|
) |
|
del metadata |
|
|
|
self._seg = panoptic_seg |
|
|
|
self._sinfo = {s["id"]: s for s in segments_info} |
|
segment_ids, areas = torch.unique(panoptic_seg, sorted=True, return_counts=True) |
|
areas = areas.numpy() |
|
sorted_idxs = np.argsort(-areas) |
|
self._seg_ids, self._seg_areas = segment_ids[sorted_idxs], areas[sorted_idxs] |
|
self._seg_ids = self._seg_ids.tolist() |
|
for sid, area in zip(self._seg_ids, self._seg_areas): |
|
if sid in self._sinfo: |
|
self._sinfo[sid]["area"] = float(area) |
|
|
|
def non_empty_mask(self): |
|
""" |
|
Returns: |
|
(H, W) array, a mask for all pixels that have a prediction |
|
""" |
|
empty_ids = [] |
|
for id in self._seg_ids: |
|
if id not in self._sinfo: |
|
empty_ids.append(id) |
|
if len(empty_ids) == 0: |
|
return np.zeros(self._seg.shape, dtype=np.uint8) |
|
assert ( |
|
len(empty_ids) == 1 |
|
), ">1 ids corresponds to no labels. This is currently not supported" |
|
return (self._seg != empty_ids[0]).numpy().astype(np.bool) |
|
|
|
def semantic_masks(self): |
|
for sid in self._seg_ids: |
|
sinfo = self._sinfo.get(sid) |
|
if sinfo is None or sinfo["isthing"]: |
|
|
|
continue |
|
yield (self._seg == sid).numpy().astype(np.bool), sinfo |
|
|
|
def instance_masks(self): |
|
for sid in self._seg_ids: |
|
sinfo = self._sinfo.get(sid) |
|
if sinfo is None or not sinfo["isthing"]: |
|
continue |
|
mask = (self._seg == sid).numpy().astype(np.bool) |
|
if mask.sum() > 0: |
|
yield mask, sinfo |
|
|
|
|
|
def _create_text_labels(classes, scores, class_names, is_crowd=None): |
|
""" |
|
Args: |
|
classes (list[int] or None): |
|
scores (list[float] or None): |
|
class_names (list[str] or None): |
|
is_crowd (list[bool] or None): |
|
|
|
Returns: |
|
list[str] or None |
|
""" |
|
labels = None |
|
if classes is not None: |
|
if class_names is not None and len(class_names) > 0: |
|
labels = [class_names[i] for i in classes] |
|
else: |
|
labels = [str(i) for i in classes] |
|
if scores is not None: |
|
if labels is None: |
|
labels = ["{:.0f}%".format(s * 100) for s in scores] |
|
else: |
|
labels = ["{} {:.0f}%".format(l, s * 100) for l, s in zip(labels, scores)] |
|
if labels is not None and is_crowd is not None: |
|
labels = [l + ("|crowd" if crowd else "") for l, crowd in zip(labels, is_crowd)] |
|
return labels |
|
|
|
|
|
class VisImage: |
|
def __init__(self, img, scale=1.0): |
|
""" |
|
Args: |
|
img (ndarray): an RGB image of shape (H, W, 3) in range [0, 255]. |
|
scale (float): scale the input image |
|
""" |
|
self.img = img |
|
self.scale = scale |
|
self.width, self.height = img.shape[1], img.shape[0] |
|
self._setup_figure(img) |
|
|
|
def _setup_figure(self, img): |
|
""" |
|
Args: |
|
Same as in :meth:`__init__()`. |
|
|
|
Returns: |
|
fig (matplotlib.pyplot.figure): top level container for all the image plot elements. |
|
ax (matplotlib.pyplot.Axes): contains figure elements and sets the coordinate system. |
|
""" |
|
fig = mplfigure.Figure(frameon=False) |
|
self.dpi = fig.get_dpi() |
|
|
|
|
|
fig.set_size_inches( |
|
(self.width * self.scale + 1e-2) / self.dpi, |
|
(self.height * self.scale + 1e-2) / self.dpi, |
|
) |
|
self.canvas = FigureCanvasAgg(fig) |
|
|
|
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0]) |
|
ax.axis("off") |
|
self.fig = fig |
|
self.ax = ax |
|
self.reset_image(img) |
|
|
|
def reset_image(self, img): |
|
""" |
|
Args: |
|
img: same as in __init__ |
|
""" |
|
img = img.astype("uint8") |
|
self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest") |
|
|
|
def save(self, filepath): |
|
""" |
|
Args: |
|
filepath (str): a string that contains the absolute path, including the file name, where |
|
the visualized image will be saved. |
|
""" |
|
self.fig.savefig(filepath) |
|
|
|
def get_image(self): |
|
""" |
|
Returns: |
|
ndarray: |
|
the visualized image of shape (H, W, 3) (RGB) in uint8 type. |
|
The shape is scaled w.r.t the input image using the given `scale` argument. |
|
""" |
|
canvas = self.canvas |
|
s, (width, height) = canvas.print_to_buffer() |
|
|
|
|
|
|
|
|
|
|
|
buffer = np.frombuffer(s, dtype="uint8") |
|
|
|
img_rgba = buffer.reshape(height, width, 4) |
|
rgb, alpha = np.split(img_rgba, [3], axis=2) |
|
return rgb.astype("uint8") |
|
|
|
|
|
class Visualizer: |
|
""" |
|
Visualizer that draws data about detection/segmentation on images. |
|
|
|
It contains methods like `draw_{text,box,circle,line,binary_mask,polygon}` |
|
that draw primitive objects to images, as well as high-level wrappers like |
|
`draw_{instance_predictions,sem_seg,panoptic_seg_predictions,dataset_dict}` |
|
that draw composite data in some pre-defined style. |
|
|
|
Note that the exact visualization style for the high-level wrappers are subject to change. |
|
Style such as color, opacity, label contents, visibility of labels, or even the visibility |
|
of objects themselves (e.g. when the object is too small) may change according |
|
to different heuristics, as long as the results still look visually reasonable. |
|
|
|
To obtain a consistent style, you can implement custom drawing functions with the |
|
abovementioned primitive methods instead. If you need more customized visualization |
|
styles, you can process the data yourself following their format documented in |
|
tutorials (:doc:`/tutorials/models`, :doc:`/tutorials/datasets`). This class does not |
|
intend to satisfy everyone's preference on drawing styles. |
|
|
|
This visualizer focuses on high rendering quality rather than performance. It is not |
|
designed to be used for real-time applications. |
|
""" |
|
|
|
|
|
|
|
def __init__(self, img_rgb, metadata=None, scale=1.0, instance_mode=ColorMode.IMAGE): |
|
""" |
|
Args: |
|
img_rgb: a numpy array of shape (H, W, C), where H and W correspond to |
|
the height and width of the image respectively. C is the number of |
|
color channels. The image is required to be in RGB format since that |
|
is a requirement of the Matplotlib library. The image is also expected |
|
to be in the range [0, 255]. |
|
metadata (Metadata): dataset metadata (e.g. class names and colors) |
|
instance_mode (ColorMode): defines one of the pre-defined style for drawing |
|
instances on an image. |
|
""" |
|
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8) |
|
if metadata is None: |
|
metadata = MetadataCatalog.get("__nonexist__") |
|
self.metadata = metadata |
|
self.output = VisImage(self.img, scale=scale) |
|
self.cpu_device = torch.device("cpu") |
|
|
|
|
|
self._default_font_size = max( |
|
np.sqrt(self.output.height * self.output.width) // 90, 10 // scale |
|
) |
|
self._default_font_size = 18 |
|
self._instance_mode = instance_mode |
|
self.keypoint_threshold = _KEYPOINT_THRESHOLD |
|
|
|
def draw_instance_predictions(self, predictions): |
|
""" |
|
Draw instance-level prediction results on an image. |
|
|
|
Args: |
|
predictions (Instances): the output of an instance detection/segmentation |
|
model. Following fields will be used to draw: |
|
"pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle"). |
|
|
|
Returns: |
|
output (VisImage): image object with visualizations. |
|
""" |
|
boxes = predictions.pred_boxes if predictions.has("pred_boxes") else None |
|
scores = predictions.scores if predictions.has("scores") else None |
|
classes = predictions.pred_classes.tolist() if predictions.has("pred_classes") else None |
|
labels = _create_text_labels(classes, scores, self.metadata.get("thing_classes", None)) |
|
keypoints = predictions.pred_keypoints if predictions.has("pred_keypoints") else None |
|
|
|
keep = (scores > 0.5).cpu() |
|
boxes = boxes[keep] |
|
scores = scores[keep] |
|
classes = np.array(classes) |
|
classes = classes[np.array(keep)] |
|
labels = np.array(labels) |
|
labels = labels[np.array(keep)] |
|
|
|
if predictions.has("pred_masks"): |
|
masks = np.asarray(predictions.pred_masks) |
|
masks = masks[np.array(keep)] |
|
masks = [GenericMask(x, self.output.height, self.output.width) for x in masks] |
|
else: |
|
masks = None |
|
|
|
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"): |
|
|
|
colors = [ |
|
self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in classes |
|
] |
|
alpha = 0.4 |
|
else: |
|
colors = None |
|
alpha = 0.4 |
|
|
|
if self._instance_mode == ColorMode.IMAGE_BW: |
|
self.output.reset_image( |
|
self._create_grayscale_image( |
|
(predictions.pred_masks.any(dim=0) > 0).numpy() |
|
if predictions.has("pred_masks") |
|
else None |
|
) |
|
) |
|
alpha = 0.3 |
|
|
|
self.overlay_instances( |
|
masks=masks, |
|
boxes=boxes, |
|
labels=labels, |
|
keypoints=keypoints, |
|
assigned_colors=colors, |
|
alpha=alpha, |
|
) |
|
return self.output |
|
|
|
def draw_sem_seg(self, sem_seg, area_threshold=None, alpha=0.7): |
|
""" |
|
Draw semantic segmentation predictions/labels. |
|
|
|
Args: |
|
sem_seg (Tensor or ndarray): the segmentation of shape (H, W). |
|
Each value is the integer label of the pixel. |
|
area_threshold (int): segments with less than `area_threshold` are not drawn. |
|
alpha (float): the larger it is, the more opaque the segmentations are. |
|
|
|
Returns: |
|
output (VisImage): image object with visualizations. |
|
""" |
|
if isinstance(sem_seg, torch.Tensor): |
|
sem_seg = sem_seg.numpy() |
|
labels, areas = np.unique(sem_seg, return_counts=True) |
|
sorted_idxs = np.argsort(-areas).tolist() |
|
labels = labels[sorted_idxs] |
|
for label in filter(lambda l: l < len(self.metadata.stuff_classes), labels): |
|
try: |
|
mask_color = [x / 255 for x in self.metadata.stuff_colors[label]] |
|
except (AttributeError, IndexError): |
|
mask_color = None |
|
|
|
binary_mask = (sem_seg == label).astype(np.uint8) |
|
text = self.metadata.stuff_classes[label] |
|
self.draw_binary_mask( |
|
binary_mask, |
|
color=mask_color, |
|
edge_color=_OFF_WHITE, |
|
text=text, |
|
alpha=alpha, |
|
area_threshold=area_threshold, |
|
) |
|
return self.output |
|
|
|
def draw_panoptic_seg(self, panoptic_seg, segments_info, area_threshold=None, alpha=0.7): |
|
""" |
|
Draw panoptic prediction annotations or results. |
|
|
|
Args: |
|
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each |
|
segment. |
|
segments_info (list[dict] or None): Describe each segment in `panoptic_seg`. |
|
If it is a ``list[dict]``, each dict contains keys "id", "category_id". |
|
If None, category id of each pixel is computed by |
|
``pixel // metadata.label_divisor``. |
|
area_threshold (int): stuff segments with less than `area_threshold` are not drawn. |
|
|
|
Returns: |
|
output (VisImage): image object with visualizations. |
|
""" |
|
pred = _PanopticPrediction(panoptic_seg, segments_info, self.metadata) |
|
|
|
if self._instance_mode == ColorMode.IMAGE_BW: |
|
self.output.reset_image(self._create_grayscale_image(pred.non_empty_mask())) |
|
|
|
|
|
for mask, sinfo in pred.semantic_masks(): |
|
category_idx = sinfo["category_id"] |
|
try: |
|
mask_color = [x / 255 for x in self.metadata.stuff_colors[category_idx]] |
|
except AttributeError: |
|
mask_color = None |
|
|
|
text = self.metadata.stuff_classes[category_idx] |
|
self.draw_binary_mask( |
|
mask, |
|
color=mask_color, |
|
edge_color=_OFF_WHITE, |
|
text=text, |
|
alpha=alpha, |
|
area_threshold=area_threshold, |
|
) |
|
|
|
|
|
all_instances = list(pred.instance_masks()) |
|
if len(all_instances) == 0: |
|
return self.output |
|
masks, sinfo = list(zip(*all_instances)) |
|
category_ids = [x["category_id"] for x in sinfo] |
|
|
|
try: |
|
scores = [x["score"] for x in sinfo] |
|
except KeyError: |
|
scores = None |
|
labels = _create_text_labels( |
|
category_ids, scores, self.metadata.thing_classes, [x.get("iscrowd", 0) for x in sinfo] |
|
) |
|
|
|
try: |
|
colors = [ |
|
self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in category_ids |
|
] |
|
except AttributeError: |
|
colors = None |
|
self.overlay_instances(masks=masks, labels=labels, assigned_colors=colors, alpha=alpha) |
|
|
|
return self.output |
|
|
|
draw_panoptic_seg_predictions = draw_panoptic_seg |
|
|
|
def draw_dataset_dict(self, dic): |
|
""" |
|
Draw annotations/segmentaions in Detectron2 Dataset format. |
|
|
|
Args: |
|
dic (dict): annotation/segmentation data of one image, in Detectron2 Dataset format. |
|
|
|
Returns: |
|
output (VisImage): image object with visualizations. |
|
""" |
|
annos = dic.get("annotations", None) |
|
if annos: |
|
if "segmentation" in annos[0]: |
|
masks = [x["segmentation"] for x in annos] |
|
else: |
|
masks = None |
|
if "keypoints" in annos[0]: |
|
keypts = [x["keypoints"] for x in annos] |
|
keypts = np.array(keypts).reshape(len(annos), -1, 3) |
|
else: |
|
keypts = None |
|
|
|
boxes = [ |
|
BoxMode.convert(x["bbox"], x["bbox_mode"], BoxMode.XYXY_ABS) |
|
if len(x["bbox"]) == 4 |
|
else x["bbox"] |
|
for x in annos |
|
] |
|
|
|
colors = None |
|
category_ids = [x["category_id"] for x in annos] |
|
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"): |
|
colors = [ |
|
self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) |
|
for c in category_ids |
|
] |
|
names = self.metadata.get("thing_classes", None) |
|
labels = _create_text_labels( |
|
category_ids, |
|
scores=None, |
|
class_names=names, |
|
is_crowd=[x.get("iscrowd", 0) for x in annos], |
|
) |
|
self.overlay_instances( |
|
labels=labels, boxes=boxes, masks=masks, keypoints=keypts, assigned_colors=colors |
|
) |
|
|
|
sem_seg = dic.get("sem_seg", None) |
|
if sem_seg is None and "sem_seg_file_name" in dic: |
|
with PathManager.open(dic["sem_seg_file_name"], "rb") as f: |
|
sem_seg = Image.open(f) |
|
sem_seg = np.asarray(sem_seg, dtype="uint8") |
|
if sem_seg is not None: |
|
self.draw_sem_seg(sem_seg, area_threshold=0, alpha=0.4) |
|
|
|
pan_seg = dic.get("pan_seg", None) |
|
if pan_seg is None and "pan_seg_file_name" in dic: |
|
with PathManager.open(dic["pan_seg_file_name"], "rb") as f: |
|
pan_seg = Image.open(f) |
|
pan_seg = np.asarray(pan_seg) |
|
from panopticapi.utils import rgb2id |
|
|
|
pan_seg = rgb2id(pan_seg) |
|
if pan_seg is not None: |
|
segments_info = dic["segments_info"] |
|
pan_seg = torch.tensor(pan_seg) |
|
self.draw_panoptic_seg(pan_seg, segments_info, area_threshold=0, alpha=0.7) |
|
return self.output |
|
|
|
def overlay_instances( |
|
self, |
|
*, |
|
boxes=None, |
|
labels=None, |
|
masks=None, |
|
keypoints=None, |
|
assigned_colors=None, |
|
alpha=0.5, |
|
): |
|
""" |
|
Args: |
|
boxes (Boxes, RotatedBoxes or ndarray): either a :class:`Boxes`, |
|
or an Nx4 numpy array of XYXY_ABS format for the N objects in a single image, |
|
or a :class:`RotatedBoxes`, |
|
or an Nx5 numpy array of (x_center, y_center, width, height, angle_degrees) format |
|
for the N objects in a single image, |
|
labels (list[str]): the text to be displayed for each instance. |
|
masks (masks-like object): Supported types are: |
|
|
|
* :class:`detectron2.structures.PolygonMasks`, |
|
:class:`detectron2.structures.BitMasks`. |
|
* list[list[ndarray]]: contains the segmentation masks for all objects in one image. |
|
The first level of the list corresponds to individual instances. The second |
|
level to all the polygon that compose the instance, and the third level |
|
to the polygon coordinates. The third level should have the format of |
|
[x0, y0, x1, y1, ..., xn, yn] (n >= 3). |
|
* list[ndarray]: each ndarray is a binary mask of shape (H, W). |
|
* list[dict]: each dict is a COCO-style RLE. |
|
keypoints (Keypoint or array like): an array-like object of shape (N, K, 3), |
|
where the N is the number of instances and K is the number of keypoints. |
|
The last dimension corresponds to (x, y, visibility or score). |
|
assigned_colors (list[matplotlib.colors]): a list of colors, where each color |
|
corresponds to each mask or box in the image. Refer to 'matplotlib.colors' |
|
for full list of formats that the colors are accepted in. |
|
Returns: |
|
output (VisImage): image object with visualizations. |
|
""" |
|
num_instances = 0 |
|
if boxes is not None: |
|
boxes = self._convert_boxes(boxes) |
|
num_instances = len(boxes) |
|
if masks is not None: |
|
masks = self._convert_masks(masks) |
|
if num_instances: |
|
assert len(masks) == num_instances |
|
else: |
|
num_instances = len(masks) |
|
if keypoints is not None: |
|
if num_instances: |
|
assert len(keypoints) == num_instances |
|
else: |
|
num_instances = len(keypoints) |
|
keypoints = self._convert_keypoints(keypoints) |
|
if labels is not None: |
|
assert len(labels) == num_instances |
|
if assigned_colors is None: |
|
assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)] |
|
if num_instances == 0: |
|
return self.output |
|
if boxes is not None and boxes.shape[1] == 5: |
|
return self.overlay_rotated_instances( |
|
boxes=boxes, labels=labels, assigned_colors=assigned_colors |
|
) |
|
|
|
|
|
areas = None |
|
if boxes is not None: |
|
areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1) |
|
elif masks is not None: |
|
areas = np.asarray([x.area() for x in masks]) |
|
|
|
if areas is not None: |
|
sorted_idxs = np.argsort(-areas).tolist() |
|
|
|
boxes = boxes[sorted_idxs] if boxes is not None else None |
|
labels = [labels[k] for k in sorted_idxs] if labels is not None else None |
|
masks = [masks[idx] for idx in sorted_idxs] if masks is not None else None |
|
assigned_colors = [assigned_colors[idx] for idx in sorted_idxs] |
|
keypoints = keypoints[sorted_idxs] if keypoints is not None else None |
|
|
|
for i in range(num_instances): |
|
color = assigned_colors[i] |
|
if boxes is not None: |
|
self.draw_box(boxes[i], edge_color=color) |
|
|
|
if masks is not None: |
|
for segment in masks[i].polygons: |
|
self.draw_polygon(segment.reshape(-1, 2), color, alpha=alpha) |
|
|
|
if labels is not None: |
|
|
|
if boxes is not None: |
|
x0, y0, x1, y1 = boxes[i] |
|
text_pos = (x0, y0) |
|
horiz_align = "left" |
|
elif masks is not None: |
|
|
|
if len(masks[i].polygons) == 0: |
|
continue |
|
|
|
x0, y0, x1, y1 = masks[i].bbox() |
|
|
|
|
|
|
|
text_pos = np.median(masks[i].mask.nonzero(), axis=1)[::-1] |
|
horiz_align = "center" |
|
else: |
|
continue |
|
|
|
instance_area = (y1 - y0) * (x1 - x0) |
|
if ( |
|
instance_area < _SMALL_OBJECT_AREA_THRESH * self.output.scale |
|
or y1 - y0 < 40 * self.output.scale |
|
): |
|
if y1 >= self.output.height - 5: |
|
text_pos = (x1, y0) |
|
else: |
|
text_pos = (x0, y1) |
|
|
|
height_ratio = (y1 - y0) / np.sqrt(self.output.height * self.output.width) |
|
lighter_color = self._change_color_brightness(color, brightness_factor=0.7) |
|
font_size = ( |
|
np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) |
|
* 0.5 |
|
* self._default_font_size |
|
) |
|
self.draw_text( |
|
labels[i], |
|
text_pos, |
|
color=lighter_color, |
|
horizontal_alignment=horiz_align, |
|
font_size=font_size, |
|
) |
|
|
|
|
|
if keypoints is not None: |
|
for keypoints_per_instance in keypoints: |
|
self.draw_and_connect_keypoints(keypoints_per_instance) |
|
|
|
return self.output |
|
|
|
def overlay_rotated_instances(self, boxes=None, labels=None, assigned_colors=None): |
|
""" |
|
Args: |
|
boxes (ndarray): an Nx5 numpy array of |
|
(x_center, y_center, width, height, angle_degrees) format |
|
for the N objects in a single image. |
|
labels (list[str]): the text to be displayed for each instance. |
|
assigned_colors (list[matplotlib.colors]): a list of colors, where each color |
|
corresponds to each mask or box in the image. Refer to 'matplotlib.colors' |
|
for full list of formats that the colors are accepted in. |
|
|
|
Returns: |
|
output (VisImage): image object with visualizations. |
|
""" |
|
num_instances = len(boxes) |
|
|
|
if assigned_colors is None: |
|
assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)] |
|
if num_instances == 0: |
|
return self.output |
|
|
|
|
|
if boxes is not None: |
|
areas = boxes[:, 2] * boxes[:, 3] |
|
|
|
sorted_idxs = np.argsort(-areas).tolist() |
|
|
|
boxes = boxes[sorted_idxs] |
|
labels = [labels[k] for k in sorted_idxs] if labels is not None else None |
|
colors = [assigned_colors[idx] for idx in sorted_idxs] |
|
|
|
for i in range(num_instances): |
|
self.draw_rotated_box_with_label( |
|
boxes[i], edge_color=colors[i], label=labels[i] if labels is not None else None |
|
) |
|
|
|
return self.output |
|
|
|
def draw_and_connect_keypoints(self, keypoints): |
|
""" |
|
Draws keypoints of an instance and follows the rules for keypoint connections |
|
to draw lines between appropriate keypoints. This follows color heuristics for |
|
line color. |
|
|
|
Args: |
|
keypoints (Tensor): a tensor of shape (K, 3), where K is the number of keypoints |
|
and the last dimension corresponds to (x, y, probability). |
|
|
|
Returns: |
|
output (VisImage): image object with visualizations. |
|
""" |
|
visible = {} |
|
keypoint_names = self.metadata.get("keypoint_names") |
|
for idx, keypoint in enumerate(keypoints): |
|
|
|
|
|
x, y, prob = keypoint |
|
if prob > self.keypoint_threshold: |
|
self.draw_circle((x, y), color=_RED) |
|
if keypoint_names: |
|
keypoint_name = keypoint_names[idx] |
|
visible[keypoint_name] = (x, y) |
|
|
|
if self.metadata.get("keypoint_connection_rules"): |
|
for kp0, kp1, color in self.metadata.keypoint_connection_rules: |
|
if kp0 in visible and kp1 in visible: |
|
x0, y0 = visible[kp0] |
|
x1, y1 = visible[kp1] |
|
color = tuple(x / 255.0 for x in color) |
|
self.draw_line([x0, x1], [y0, y1], color=color) |
|
|
|
|
|
|
|
|
|
try: |
|
ls_x, ls_y = visible["left_shoulder"] |
|
rs_x, rs_y = visible["right_shoulder"] |
|
mid_shoulder_x, mid_shoulder_y = (ls_x + rs_x) / 2, (ls_y + rs_y) / 2 |
|
except KeyError: |
|
pass |
|
else: |
|
|
|
nose_x, nose_y = visible.get("nose", (None, None)) |
|
if nose_x is not None: |
|
self.draw_line([nose_x, mid_shoulder_x], [nose_y, mid_shoulder_y], color=_RED) |
|
|
|
try: |
|
|
|
lh_x, lh_y = visible["left_hip"] |
|
rh_x, rh_y = visible["right_hip"] |
|
except KeyError: |
|
pass |
|
else: |
|
mid_hip_x, mid_hip_y = (lh_x + rh_x) / 2, (lh_y + rh_y) / 2 |
|
self.draw_line([mid_hip_x, mid_shoulder_x], [mid_hip_y, mid_shoulder_y], color=_RED) |
|
return self.output |
|
|
|
""" |
|
Primitive drawing functions: |
|
""" |
|
|
|
def draw_text( |
|
self, |
|
text, |
|
position, |
|
*, |
|
font_size=None, |
|
color="g", |
|
horizontal_alignment="center", |
|
rotation=0, |
|
): |
|
""" |
|
Args: |
|
text (str): class label |
|
position (tuple): a tuple of the x and y coordinates to place text on image. |
|
font_size (int, optional): font of the text. If not provided, a font size |
|
proportional to the image width is calculated and used. |
|
color: color of the text. Refer to `matplotlib.colors` for full list |
|
of formats that are accepted. |
|
horizontal_alignment (str): see `matplotlib.text.Text` |
|
rotation: rotation angle in degrees CCW |
|
|
|
Returns: |
|
output (VisImage): image object with text drawn. |
|
""" |
|
if not font_size: |
|
font_size = self._default_font_size |
|
|
|
|
|
color = np.maximum(list(mplc.to_rgb(color)), 0.2) |
|
color[np.argmax(color)] = max(0.8, np.max(color)) |
|
|
|
x, y = position |
|
self.output.ax.text( |
|
x, |
|
y, |
|
text, |
|
size=font_size * self.output.scale, |
|
family="sans-serif", |
|
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"}, |
|
verticalalignment="top", |
|
horizontalalignment=horizontal_alignment, |
|
color=color, |
|
zorder=10, |
|
rotation=rotation, |
|
) |
|
return self.output |
|
|
|
def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"): |
|
""" |
|
Args: |
|
box_coord (tuple): a tuple containing x0, y0, x1, y1 coordinates, where x0 and y0 |
|
are the coordinates of the image's top left corner. x1 and y1 are the |
|
coordinates of the image's bottom right corner. |
|
alpha (float): blending efficient. Smaller values lead to more transparent masks. |
|
edge_color: color of the outline of the box. Refer to `matplotlib.colors` |
|
for full list of formats that are accepted. |
|
line_style (string): the string to use to create the outline of the boxes. |
|
|
|
Returns: |
|
output (VisImage): image object with box drawn. |
|
""" |
|
x0, y0, x1, y1 = box_coord |
|
width = x1 - x0 |
|
height = y1 - y0 |
|
|
|
linewidth = max(self._default_font_size / 4, 1) |
|
|
|
self.output.ax.add_patch( |
|
mpl.patches.Rectangle( |
|
(x0, y0), |
|
width, |
|
height, |
|
fill=False, |
|
edgecolor=edge_color, |
|
linewidth=linewidth * self.output.scale, |
|
alpha=alpha, |
|
linestyle=line_style, |
|
) |
|
) |
|
return self.output |
|
|
|
def draw_rotated_box_with_label( |
|
self, rotated_box, alpha=0.5, edge_color="g", line_style="-", label=None |
|
): |
|
""" |
|
Draw a rotated box with label on its top-left corner. |
|
|
|
Args: |
|
rotated_box (tuple): a tuple containing (cnt_x, cnt_y, w, h, angle), |
|
where cnt_x and cnt_y are the center coordinates of the box. |
|
w and h are the width and height of the box. angle represents how |
|
many degrees the box is rotated CCW with regard to the 0-degree box. |
|
alpha (float): blending efficient. Smaller values lead to more transparent masks. |
|
edge_color: color of the outline of the box. Refer to `matplotlib.colors` |
|
for full list of formats that are accepted. |
|
line_style (string): the string to use to create the outline of the boxes. |
|
label (string): label for rotated box. It will not be rendered when set to None. |
|
|
|
Returns: |
|
output (VisImage): image object with box drawn. |
|
""" |
|
cnt_x, cnt_y, w, h, angle = rotated_box |
|
area = w * h |
|
|
|
linewidth = self._default_font_size / ( |
|
6 if area < _SMALL_OBJECT_AREA_THRESH * self.output.scale else 3 |
|
) |
|
|
|
theta = angle * math.pi / 180.0 |
|
c = math.cos(theta) |
|
s = math.sin(theta) |
|
rect = [(-w / 2, h / 2), (-w / 2, -h / 2), (w / 2, -h / 2), (w / 2, h / 2)] |
|
|
|
rotated_rect = [(s * yy + c * xx + cnt_x, c * yy - s * xx + cnt_y) for (xx, yy) in rect] |
|
for k in range(4): |
|
j = (k + 1) % 4 |
|
self.draw_line( |
|
[rotated_rect[k][0], rotated_rect[j][0]], |
|
[rotated_rect[k][1], rotated_rect[j][1]], |
|
color=edge_color, |
|
linestyle="--" if k == 1 else line_style, |
|
linewidth=linewidth, |
|
) |
|
|
|
if label is not None: |
|
text_pos = rotated_rect[1] |
|
|
|
height_ratio = h / np.sqrt(self.output.height * self.output.width) |
|
label_color = self._change_color_brightness(edge_color, brightness_factor=0.7) |
|
font_size = ( |
|
np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) * 0.5 * self._default_font_size |
|
) |
|
self.draw_text(label, text_pos, color=label_color, font_size=font_size, rotation=angle) |
|
|
|
return self.output |
|
|
|
def draw_circle(self, circle_coord, color, radius=3): |
|
""" |
|
Args: |
|
circle_coord (list(int) or tuple(int)): contains the x and y coordinates |
|
of the center of the circle. |
|
color: color of the polygon. Refer to `matplotlib.colors` for a full list of |
|
formats that are accepted. |
|
radius (int): radius of the circle. |
|
|
|
Returns: |
|
output (VisImage): image object with box drawn. |
|
""" |
|
x, y = circle_coord |
|
self.output.ax.add_patch( |
|
mpl.patches.Circle(circle_coord, radius=radius, fill=True, color=color) |
|
) |
|
return self.output |
|
|
|
def draw_line(self, x_data, y_data, color, linestyle="-", linewidth=None): |
|
""" |
|
Args: |
|
x_data (list[int]): a list containing x values of all the points being drawn. |
|
Length of list should match the length of y_data. |
|
y_data (list[int]): a list containing y values of all the points being drawn. |
|
Length of list should match the length of x_data. |
|
color: color of the line. Refer to `matplotlib.colors` for a full list of |
|
formats that are accepted. |
|
linestyle: style of the line. Refer to `matplotlib.lines.Line2D` |
|
for a full list of formats that are accepted. |
|
linewidth (float or None): width of the line. When it's None, |
|
a default value will be computed and used. |
|
|
|
Returns: |
|
output (VisImage): image object with line drawn. |
|
""" |
|
if linewidth is None: |
|
linewidth = self._default_font_size / 3 |
|
linewidth = max(linewidth, 1) |
|
self.output.ax.add_line( |
|
mpl.lines.Line2D( |
|
x_data, |
|
y_data, |
|
linewidth=linewidth * self.output.scale, |
|
color=color, |
|
linestyle=linestyle, |
|
) |
|
) |
|
return self.output |
|
|
|
def draw_binary_mask( |
|
self, binary_mask, color=None, *, edge_color=None, text=None, alpha=0.7, area_threshold=10 |
|
): |
|
""" |
|
Args: |
|
binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and |
|
W is the image width. Each value in the array is either a 0 or 1 value of uint8 |
|
type. |
|
color: color of the mask. Refer to `matplotlib.colors` for a full list of |
|
formats that are accepted. If None, will pick a random color. |
|
edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a |
|
full list of formats that are accepted. |
|
text (str): if None, will be drawn on the object |
|
alpha (float): blending efficient. Smaller values lead to more transparent masks. |
|
area_threshold (float): a connected component smaller than this area will not be shown. |
|
|
|
Returns: |
|
output (VisImage): image object with mask drawn. |
|
""" |
|
if color is None: |
|
color = random_color(rgb=True, maximum=1) |
|
color = mplc.to_rgb(color) |
|
|
|
has_valid_segment = False |
|
binary_mask = binary_mask.astype("uint8") |
|
mask = GenericMask(binary_mask, self.output.height, self.output.width) |
|
shape2d = (binary_mask.shape[0], binary_mask.shape[1]) |
|
|
|
if not mask.has_holes: |
|
|
|
for segment in mask.polygons: |
|
area = mask_util.area(mask_util.frPyObjects([segment], shape2d[0], shape2d[1])) |
|
if area < (area_threshold or 0): |
|
continue |
|
has_valid_segment = True |
|
segment = segment.reshape(-1, 2) |
|
self.draw_polygon(segment, color=color, edge_color=edge_color, alpha=alpha) |
|
else: |
|
|
|
|
|
rgba = np.zeros(shape2d + (4,), dtype="float32") |
|
rgba[:, :, :3] = color |
|
rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha |
|
has_valid_segment = True |
|
self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0)) |
|
|
|
if text is not None and has_valid_segment: |
|
lighter_color = self._change_color_brightness(color, brightness_factor=0.7) |
|
self._draw_text_in_mask(binary_mask, text, lighter_color) |
|
return self.output |
|
|
|
def draw_soft_mask(self, soft_mask, color=None, *, text=None, alpha=0.5): |
|
""" |
|
Args: |
|
soft_mask (ndarray): float array of shape (H, W), each value in [0, 1]. |
|
color: color of the mask. Refer to `matplotlib.colors` for a full list of |
|
formats that are accepted. If None, will pick a random color. |
|
text (str): if None, will be drawn on the object |
|
alpha (float): blending efficient. Smaller values lead to more transparent masks. |
|
|
|
Returns: |
|
output (VisImage): image object with mask drawn. |
|
""" |
|
if color is None: |
|
color = random_color(rgb=True, maximum=1) |
|
color = mplc.to_rgb(color) |
|
|
|
shape2d = (soft_mask.shape[0], soft_mask.shape[1]) |
|
rgba = np.zeros(shape2d + (4,), dtype="float32") |
|
rgba[:, :, :3] = color |
|
rgba[:, :, 3] = soft_mask * alpha |
|
self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0)) |
|
|
|
if text is not None: |
|
lighter_color = self._change_color_brightness(color, brightness_factor=0.7) |
|
binary_mask = (soft_mask > 0.5).astype("uint8") |
|
self._draw_text_in_mask(binary_mask, text, lighter_color) |
|
return self.output |
|
|
|
def draw_polygon(self, segment, color, edge_color=None, alpha=0.5): |
|
""" |
|
Args: |
|
segment: numpy array of shape Nx2, containing all the points in the polygon. |
|
color: color of the polygon. Refer to `matplotlib.colors` for a full list of |
|
formats that are accepted. |
|
edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a |
|
full list of formats that are accepted. If not provided, a darker shade |
|
of the polygon color will be used instead. |
|
alpha (float): blending efficient. Smaller values lead to more transparent masks. |
|
|
|
Returns: |
|
output (VisImage): image object with polygon drawn. |
|
""" |
|
if edge_color is None: |
|
|
|
if alpha > 0.8: |
|
edge_color = self._change_color_brightness(color, brightness_factor=-0.7) |
|
else: |
|
edge_color = color |
|
edge_color = mplc.to_rgb(edge_color) + (1,) |
|
|
|
polygon = mpl.patches.Polygon( |
|
segment, |
|
fill=True, |
|
facecolor=mplc.to_rgb(color) + (alpha,), |
|
edgecolor=edge_color, |
|
linewidth=max(self._default_font_size // 15 * self.output.scale, 1), |
|
) |
|
self.output.ax.add_patch(polygon) |
|
return self.output |
|
|
|
""" |
|
Internal methods: |
|
""" |
|
|
|
def _jitter(self, color): |
|
""" |
|
Randomly modifies given color to produce a slightly different color than the color given. |
|
|
|
Args: |
|
color (tuple[double]): a tuple of 3 elements, containing the RGB values of the color |
|
picked. The values in the list are in the [0.0, 1.0] range. |
|
|
|
Returns: |
|
jittered_color (tuple[double]): a tuple of 3 elements, containing the RGB values of the |
|
color after being jittered. The values in the list are in the [0.0, 1.0] range. |
|
""" |
|
color = mplc.to_rgb(color) |
|
|
|
vec = np.random.rand(3) |
|
|
|
vec = vec / np.linalg.norm(vec) * 0.5 |
|
res = np.clip(vec + color, 0, 1) |
|
return tuple(res) |
|
|
|
def _create_grayscale_image(self, mask=None): |
|
""" |
|
Create a grayscale version of the original image. |
|
The colors in masked area, if given, will be kept. |
|
""" |
|
img_bw = self.img.astype("f4").mean(axis=2) |
|
img_bw = np.stack([img_bw] * 3, axis=2) |
|
if mask is not None: |
|
img_bw[mask] = self.img[mask] |
|
return img_bw |
|
|
|
def _change_color_brightness(self, color, brightness_factor): |
|
""" |
|
Depending on the brightness_factor, gives a lighter or darker color i.e. a color with |
|
less or more saturation than the original color. |
|
|
|
Args: |
|
color: color of the polygon. Refer to `matplotlib.colors` for a full list of |
|
formats that are accepted. |
|
brightness_factor (float): a value in [-1.0, 1.0] range. A lightness factor of |
|
0 will correspond to no change, a factor in [-1.0, 0) range will result in |
|
a darker color and a factor in (0, 1.0] range will result in a lighter color. |
|
|
|
Returns: |
|
modified_color (tuple[double]): a tuple containing the RGB values of the |
|
modified color. Each value in the tuple is in the [0.0, 1.0] range. |
|
""" |
|
assert brightness_factor >= -1.0 and brightness_factor <= 1.0 |
|
color = mplc.to_rgb(color) |
|
polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color)) |
|
modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1]) |
|
modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness |
|
modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness |
|
modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2]) |
|
return modified_color |
|
|
|
def _convert_boxes(self, boxes): |
|
""" |
|
Convert different format of boxes to an NxB array, where B = 4 or 5 is the box dimension. |
|
""" |
|
if isinstance(boxes, Boxes) or isinstance(boxes, RotatedBoxes): |
|
return boxes.tensor.detach().numpy() |
|
else: |
|
return np.asarray(boxes) |
|
|
|
def _convert_masks(self, masks_or_polygons): |
|
""" |
|
Convert different format of masks or polygons to a tuple of masks and polygons. |
|
|
|
Returns: |
|
list[GenericMask]: |
|
""" |
|
|
|
m = masks_or_polygons |
|
if isinstance(m, PolygonMasks): |
|
m = m.polygons |
|
if isinstance(m, BitMasks): |
|
m = m.tensor.numpy() |
|
if isinstance(m, torch.Tensor): |
|
m = m.numpy() |
|
ret = [] |
|
for x in m: |
|
if isinstance(x, GenericMask): |
|
ret.append(x) |
|
else: |
|
ret.append(GenericMask(x, self.output.height, self.output.width)) |
|
return ret |
|
|
|
def _draw_text_in_mask(self, binary_mask, text, color): |
|
""" |
|
Find proper places to draw text given a binary mask. |
|
""" |
|
|
|
_num_cc, cc_labels, stats, centroids = cv2.connectedComponentsWithStats(binary_mask, 8) |
|
if stats[1:, -1].size == 0: |
|
return |
|
largest_component_id = np.argmax(stats[1:, -1]) + 1 |
|
|
|
|
|
for cid in range(1, _num_cc): |
|
if cid == largest_component_id or stats[cid, -1] > _LARGE_MASK_AREA_THRESH: |
|
|
|
|
|
center = np.median((cc_labels == cid).nonzero(), axis=1)[::-1] |
|
self.draw_text(text, center, color=color) |
|
|
|
def _convert_keypoints(self, keypoints): |
|
if isinstance(keypoints, Keypoints): |
|
keypoints = keypoints.tensor |
|
keypoints = np.asarray(keypoints) |
|
return keypoints |
|
|
|
def get_output(self): |
|
""" |
|
Returns: |
|
output (VisImage): the image output containing the visualizations added |
|
to the image. |
|
""" |
|
return self.output |