|
import os |
|
import time |
|
import torch |
|
import pickle |
|
import subprocess |
|
|
|
|
|
import torch.distributed as dist |
|
|
|
|
|
def apply_distributed(opt): |
|
if opt['rank'] == 0: |
|
hostname_cmd = ["hostname -I"] |
|
result = subprocess.check_output(hostname_cmd, shell=True) |
|
master_address = result.decode('utf-8').split()[0] |
|
master_port = opt['PORT'] |
|
else: |
|
master_address = None |
|
master_port = None |
|
|
|
master_address = MPI.COMM_WORLD.bcast(master_address, root=0) |
|
master_port = MPI.COMM_WORLD.bcast(master_port, root=0) |
|
|
|
if torch.distributed.is_available() and opt['world_size'] > 1: |
|
init_method_url = 'tcp://{}:{}'.format(master_address, master_port) |
|
backend = 'nccl' |
|
world_size = opt['world_size'] |
|
rank = opt['rank'] |
|
torch.distributed.init_process_group(backend=backend, |
|
init_method=init_method_url, |
|
world_size=world_size, |
|
rank=rank) |
|
|
|
def init_distributed(opt): |
|
opt['CUDA'] = opt.get('CUDA', True) and torch.cuda.is_available() |
|
if 'OMPI_COMM_WORLD_SIZE' not in os.environ: |
|
|
|
|
|
opt['env_info'] = 'no MPI' |
|
opt['world_size'] = 1 |
|
opt['local_size'] = 1 |
|
opt['rank'] = 0 |
|
opt['local_rank'] = 0 |
|
opt['master_address'] = '127.0.0.1' |
|
opt['master_port'] = '8673' |
|
else: |
|
|
|
|
|
opt['world_size'] = int(os.environ['OMPI_COMM_WORLD_SIZE']) |
|
opt['local_size'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_SIZE']) |
|
opt['rank'] = int(os.environ['OMPI_COMM_WORLD_RANK']) |
|
opt['local_rank'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) |
|
|
|
|
|
if not opt['CUDA']: |
|
assert opt['world_size'] == 1, 'multi-GPU training without CUDA is not supported since we use NCCL as communication backend' |
|
opt['device'] = torch.device("cpu") |
|
else: |
|
torch.cuda.set_device(opt['local_rank']) |
|
opt['device'] = torch.device("cuda", opt['local_rank']) |
|
|
|
apply_distributed(opt) |
|
return opt |
|
|
|
def is_main_process(): |
|
rank = 0 |
|
if 'OMPI_COMM_WORLD_SIZE' in os.environ: |
|
rank = int(os.environ['OMPI_COMM_WORLD_RANK']) |
|
|
|
return rank == 0 |
|
|
|
def get_world_size(): |
|
if not dist.is_available(): |
|
return 1 |
|
if not dist.is_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
def get_rank(): |
|
if not dist.is_available(): |
|
return 0 |
|
if not dist.is_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def synchronize(): |
|
""" |
|
Helper function to synchronize (barrier) among all processes when |
|
using distributed training |
|
""" |
|
if not dist.is_available(): |
|
return |
|
if not dist.is_initialized(): |
|
return |
|
world_size = dist.get_world_size() |
|
rank = dist.get_rank() |
|
if world_size == 1: |
|
return |
|
|
|
def _send_and_wait(r): |
|
if rank == r: |
|
tensor = torch.tensor(0, device="cuda") |
|
else: |
|
tensor = torch.tensor(1, device="cuda") |
|
dist.broadcast(tensor, r) |
|
while tensor.item() == 1: |
|
time.sleep(1) |
|
|
|
_send_and_wait(0) |
|
|
|
_send_and_wait(1) |