|
|
|
import contextlib |
|
import copy |
|
import io |
|
import itertools |
|
import json |
|
import logging |
|
import numpy as np |
|
import os |
|
import pickle |
|
from collections import OrderedDict |
|
import pycocotools.mask as mask_util |
|
import torch |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
from tabulate import tabulate |
|
|
|
import detectron2.utils.comm as comm |
|
from detectron2.config import CfgNode |
|
from detectron2.data import MetadataCatalog |
|
from detectron2.data.datasets.coco import convert_to_coco_json |
|
from detectron2.evaluation.coco_evaluation import COCOEvaluator, _evaluate_predictions_on_coco |
|
from detectron2.evaluation.fast_eval_api import COCOeval_opt |
|
from detectron2.structures import Boxes, BoxMode, pairwise_iou |
|
from detectron2.utils.file_io import PathManager |
|
from detectron2.utils.logger import create_small_table |
|
|
|
|
|
|
|
class InstanceSegEvaluator(COCOEvaluator): |
|
""" |
|
Evaluate AR for object proposals, AP for instance detection/segmentation, AP |
|
for keypoint detection outputs using COCO's metrics. |
|
See http://cocodataset.org/#detection-eval and |
|
http://cocodataset.org/#keypoints-eval to understand its metrics. |
|
The metrics range from 0 to 100 (instead of 0 to 1), where a -1 or NaN means |
|
the metric cannot be computed (e.g. due to no predictions made). |
|
|
|
In addition to COCO, this evaluator is able to support any bounding box detection, |
|
instance segmentation, or keypoint detection dataset. |
|
""" |
|
|
|
def _eval_predictions(self, predictions, img_ids=None): |
|
""" |
|
Evaluate predictions. Fill self._results with the metrics of the tasks. |
|
""" |
|
self._logger.info("Preparing results for COCO format ...") |
|
coco_results = list(itertools.chain(*[x["instances"] for x in predictions])) |
|
tasks = self._tasks or self._tasks_from_predictions(coco_results) |
|
|
|
|
|
if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"): |
|
dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id |
|
|
|
|
|
|
|
|
|
reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()} |
|
for result in coco_results: |
|
category_id = result["category_id"] |
|
|
|
|
|
|
|
|
|
|
|
assert category_id in reverse_id_mapping, ( |
|
f"A prediction has class={category_id}, " |
|
f"but the dataset only has class ids in {dataset_id_to_contiguous_id}." |
|
) |
|
result["category_id"] = reverse_id_mapping[category_id] |
|
|
|
if self._output_dir: |
|
file_path = os.path.join(self._output_dir, "coco_instances_results.json") |
|
self._logger.info("Saving results to {}".format(file_path)) |
|
with PathManager.open(file_path, "w") as f: |
|
f.write(json.dumps(coco_results)) |
|
f.flush() |
|
|
|
if not self._do_evaluation: |
|
self._logger.info("Annotations are not available for evaluation.") |
|
return |
|
|
|
self._logger.info( |
|
"Evaluating predictions with {} COCO API...".format( |
|
"unofficial" if self._use_fast_impl else "official" |
|
) |
|
) |
|
for task in sorted(tasks): |
|
assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!" |
|
coco_eval = ( |
|
_evaluate_predictions_on_coco( |
|
self._coco_api, |
|
coco_results, |
|
task, |
|
kpt_oks_sigmas=self._kpt_oks_sigmas, |
|
use_fast_impl=self._use_fast_impl, |
|
img_ids=img_ids, |
|
max_dets_per_image=self._max_dets_per_image, |
|
) |
|
if len(coco_results) > 0 |
|
else None |
|
) |
|
|
|
res = self._derive_coco_results( |
|
coco_eval, task, class_names=self._metadata.get("thing_classes") |
|
) |
|
self._results[task] = res |
|
|