|
from typing import Optional |
|
|
|
import torch |
|
from torch import nn, Tensor |
|
from torch.nn import functional as F |
|
|
|
from timm.models.layers import trunc_normal_ |
|
from detectron2.layers import Conv2d |
|
import fvcore.nn.weight_init as weight_init |
|
|
|
from ..utils import MultiheadAttention |
|
|
|
|
|
class SelfAttentionLayer(nn.Module): |
|
|
|
def __init__(self, d_model, nhead, dropout=0.0, |
|
activation="relu", normalize_before=False): |
|
super().__init__() |
|
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout) |
|
|
|
self.norm = nn.LayerNorm(d_model) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
self.activation = _get_activation_fn(activation) |
|
self.normalize_before = normalize_before |
|
|
|
self._reset_parameters() |
|
|
|
def _reset_parameters(self): |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform_(p) |
|
|
|
def with_pos_embed(self, tensor, pos: Optional[Tensor]): |
|
return tensor if pos is None else tensor + pos |
|
|
|
def forward_post(self, tgt, |
|
tgt_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None): |
|
|
|
q = k = self.with_pos_embed(tgt, query_pos) |
|
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, |
|
key_padding_mask=tgt_key_padding_mask)[0] |
|
tgt = tgt + self.dropout(tgt2) |
|
tgt = self.norm(tgt) |
|
return tgt |
|
|
|
def forward_pre(self, tgt, |
|
tgt_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None): |
|
tgt2 = self.norm(tgt) |
|
q = k = self.with_pos_embed(tgt2, query_pos) |
|
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, |
|
key_padding_mask=tgt_key_padding_mask)[0] |
|
tgt = tgt + self.dropout(tgt2) |
|
|
|
return tgt |
|
|
|
def forward(self, tgt, |
|
tgt_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None): |
|
if self.normalize_before: |
|
return self.forward_pre(tgt, tgt_mask, |
|
tgt_key_padding_mask, query_pos) |
|
return self.forward_post(tgt, tgt_mask, |
|
tgt_key_padding_mask, query_pos) |
|
|
|
|
|
class CrossAttentionLayer(nn.Module): |
|
|
|
def __init__(self, d_model, nhead, dropout=0.0, |
|
activation="relu", normalize_before=False): |
|
super().__init__() |
|
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) |
|
|
|
self.norm = nn.LayerNorm(d_model) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
self.activation = _get_activation_fn(activation) |
|
self.normalize_before = normalize_before |
|
|
|
self._reset_parameters() |
|
|
|
def _reset_parameters(self): |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform_(p) |
|
|
|
def with_pos_embed(self, tensor, pos: Optional[Tensor]): |
|
return tensor if pos is None else tensor + pos |
|
|
|
def forward_post(self, tgt, memory, |
|
memory_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None): |
|
tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), |
|
key=self.with_pos_embed(memory, pos), |
|
value=memory, attn_mask=memory_mask, |
|
key_padding_mask=memory_key_padding_mask) |
|
tgt = tgt + self.dropout(tgt2) |
|
tgt = self.norm(tgt) |
|
return tgt, avg_attn |
|
|
|
def forward_pre(self, tgt, memory, |
|
memory_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None): |
|
tgt2 = self.norm(tgt) |
|
tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), |
|
key=self.with_pos_embed(memory, pos), |
|
value=memory, attn_mask=memory_mask, |
|
key_padding_mask=memory_key_padding_mask) |
|
tgt = tgt + self.dropout(tgt2) |
|
|
|
return tgt, avg_attn |
|
|
|
def forward(self, tgt, memory, |
|
memory_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None): |
|
if self.normalize_before: |
|
return self.forward_pre(tgt, memory, memory_mask, |
|
memory_key_padding_mask, pos, query_pos) |
|
return self.forward_post(tgt, memory, memory_mask, |
|
memory_key_padding_mask, pos, query_pos) |
|
|
|
|
|
class FFNLayer(nn.Module): |
|
|
|
def __init__(self, d_model, dim_feedforward=2048, dropout=0.0, |
|
activation="relu", normalize_before=False): |
|
super().__init__() |
|
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward) |
|
self.dropout = nn.Dropout(dropout) |
|
self.linear2 = nn.Linear(dim_feedforward, d_model) |
|
|
|
self.norm = nn.LayerNorm(d_model) |
|
|
|
self.activation = _get_activation_fn(activation) |
|
self.normalize_before = normalize_before |
|
|
|
self._reset_parameters() |
|
|
|
def _reset_parameters(self): |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform_(p) |
|
|
|
def with_pos_embed(self, tensor, pos: Optional[Tensor]): |
|
return tensor if pos is None else tensor + pos |
|
|
|
def forward_post(self, tgt): |
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) |
|
tgt = tgt + self.dropout(tgt2) |
|
tgt = self.norm(tgt) |
|
return tgt |
|
|
|
def forward_pre(self, tgt): |
|
tgt2 = self.norm(tgt) |
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) |
|
tgt = tgt + self.dropout(tgt2) |
|
return tgt |
|
|
|
def forward(self, tgt): |
|
if self.normalize_before: |
|
return self.forward_pre(tgt) |
|
return self.forward_post(tgt) |
|
|
|
|
|
def _get_activation_fn(activation): |
|
"""Return an activation function given a string""" |
|
if activation == "relu": |
|
return F.relu |
|
if activation == "gelu": |
|
return F.gelu |
|
if activation == "glu": |
|
return F.glu |
|
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") |
|
|
|
|
|
class MLP(nn.Module): |
|
""" Very simple multi-layer perceptron (also called FFN)""" |
|
|
|
def __init__(self, input_dim, hidden_dim, output_dim, num_layers): |
|
super().__init__() |
|
self.num_layers = num_layers |
|
h = [hidden_dim] * (num_layers - 1) |
|
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) |
|
|
|
def forward(self, x): |
|
for i, layer in enumerate(self.layers): |
|
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) |
|
return x |
|
|