savvi83 commited on
Commit
5d517d3
·
verified ·
1 Parent(s): c287a16

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -40
app.py CHANGED
@@ -2,11 +2,9 @@ from diffusers import StableDiffusionPipeline, DiffusionPipeline
2
  import torch
3
  import random
4
  from datetime import datetime
5
- from flask import Flask, render_template_string, send_file
6
- import io
7
  from PIL import Image
8
 
9
- resolution = (768, 1024) # Risoluzione dell'immagine (width, height)
10
  num_steps = 20
11
  guidance_scale = 7.5
12
  neg_prompt = "blurry"
@@ -18,48 +16,18 @@ pipe = DiffusionPipeline.from_pretrained(model_id)
18
  device = "cuda" if torch.cuda.is_available() else "cpu"
19
  pipe = pipe.to(device)
20
 
21
- app = Flask(__name__)
22
 
23
  # Funzione per generare un'immagine
24
- def generate_image(prompt, seed, steps, neg_prompt):
25
  generator = torch.manual_seed(seed)
26
  image = pipe(prompt, height=resolution[1], width=resolution[0], num_inference_steps=steps, guidance_scale=guidance_scale, generator=generator, negative_prompt=neg_prompt).images[0]
27
  return image
28
 
29
- @app.route('/')
30
- def home():
31
- # Genera un'immagine
32
- prompt = "A beautiful landscape"
33
- seed = random.randint(1, 1000000)
34
- image = generate_image(prompt, seed, num_steps, neg_prompt)
35
 
36
- # Salva l'immagine in un buffer
37
- img_io = io.BytesIO()
38
- image.save(img_io, 'JPEG', quality=70)
39
- img_io.seek(0)
40
 
41
- # Genera la pagina HTML
42
- html = """
43
- <!doctype html>
44
- <title>Generated Image</title>
45
- <h1>Generated Image</h1>
46
- <img src="/image" alt="Generated Image">
47
- """
48
- return render_template_string(html)
49
-
50
- @app.route('/image')
51
- def image():
52
- # Genera un'immagine
53
- prompt = "A beautiful landscape"
54
- seed = random.randint(1, 1000000)
55
- image = generate_image(prompt, seed, num_steps, neg_prompt)
56
-
57
- # Salva l'immagine in un buffer
58
- img_io = io.BytesIO()
59
- image.save(img_io, 'JPEG', quality=70)
60
- img_io.seek(0)
61
-
62
- return send_file(img_io, mimetype='image/jpeg')
63
-
64
- if __name__ == '__main__':
65
- app.run(debug=True)
 
2
  import torch
3
  import random
4
  from datetime import datetime
 
 
5
  from PIL import Image
6
 
7
+ resolution = (512, 512) # Risoluzione dell'immagine (width, height)
8
  num_steps = 20
9
  guidance_scale = 7.5
10
  neg_prompt = "blurry"
 
16
  device = "cuda" if torch.cuda.is_available() else "cpu"
17
  pipe = pipe.to(device)
18
 
 
19
 
20
  # Funzione per generare un'immagine
21
+ def generate_image(prompt, neg_prompt, seed, steps):
22
  generator = torch.manual_seed(seed)
23
  image = pipe(prompt, height=resolution[1], width=resolution[0], num_inference_steps=steps, guidance_scale=guidance_scale, generator=generator, negative_prompt=neg_prompt).images[0]
24
  return image
25
 
26
+ demo = gr.Interface(
27
+ fn=generate_image,
28
+ inputs=["text","text", "slider", "slider"],
29
+ outputs=[gr.Image()],
30
+ )
 
31
 
32
+ demo.launch()
 
 
 
33