Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,33 +5,124 @@ import spacy
|
|
5 |
import subprocess
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
|
|
8 |
|
9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
nltk.download('wordnet')
|
11 |
nltk.download('omw-1.4')
|
12 |
|
13 |
-
# Ensure the SpaCy model is installed
|
14 |
try:
|
15 |
nlp = spacy.load("en_core_web_sm")
|
16 |
except OSError:
|
17 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
18 |
nlp = spacy.load("en_core_web_sm")
|
19 |
|
20 |
-
# Initialize the English text classification pipeline for AI detection
|
21 |
-
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
22 |
-
|
23 |
-
# Function to predict the label and score for English text (AI Detection)
|
24 |
-
def predict_en(text):
|
25 |
-
res = pipeline_en(text)[0]
|
26 |
-
return res['label'], res['score']
|
27 |
-
|
28 |
# Function to get synonyms using NLTK WordNet (Humanifier)
|
29 |
def get_synonyms_nltk(word, pos):
|
30 |
synsets = wordnet.synsets(word, pos=pos)
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
37 |
def paraphrase_with_spacy_nltk(text):
|
@@ -41,37 +132,37 @@ def paraphrase_with_spacy_nltk(text):
|
|
41 |
for token in doc:
|
42 |
# Map SpaCy POS tags to WordNet POS tags
|
43 |
pos = None
|
44 |
-
if token.pos_
|
45 |
pos = wordnet.NOUN
|
46 |
-
elif token.pos_
|
47 |
pos = wordnet.VERB
|
48 |
-
elif token.pos_
|
49 |
pos = wordnet.ADJ
|
50 |
-
elif token.pos_
|
51 |
pos = wordnet.ADV
|
52 |
|
53 |
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
|
54 |
|
55 |
# Replace with a synonym only if it makes sense
|
56 |
-
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}
|
57 |
paraphrased_words.append(synonyms[0])
|
58 |
else:
|
59 |
paraphrased_words.append(token.text)
|
60 |
|
61 |
-
|
62 |
-
paraphrased_sentence = ' '.join(paraphrased_words)
|
63 |
-
|
64 |
-
return paraphrased_sentence
|
65 |
|
66 |
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
|
67 |
def paraphrase_and_correct(text):
|
68 |
# Step 1: Paraphrase the text
|
69 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
70 |
|
71 |
-
#
|
72 |
-
|
|
|
|
|
|
|
73 |
|
74 |
-
return
|
75 |
|
76 |
# Gradio app setup with two tabs
|
77 |
with gr.Blocks() as demo:
|
|
|
5 |
import subprocess
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
+
from collections import defaultdict
|
9 |
|
10 |
+
# Initialize the English text classification pipeline for AI detection
|
11 |
+
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
12 |
+
|
13 |
+
# Function to predict the label and score for English text (AI Detection)
|
14 |
+
def predict_en(text):
|
15 |
+
res = pipeline_en(text)[0]
|
16 |
+
return res['label'], res['score']
|
17 |
+
|
18 |
+
# Ensure necessary NLTK data is downloaded for Humanifier
|
19 |
nltk.download('wordnet')
|
20 |
nltk.download('omw-1.4')
|
21 |
|
22 |
+
# Ensure the SpaCy model is installed for Humanifier
|
23 |
try:
|
24 |
nlp = spacy.load("en_core_web_sm")
|
25 |
except OSError:
|
26 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
27 |
nlp = spacy.load("en_core_web_sm")
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# Function to get synonyms using NLTK WordNet (Humanifier)
|
30 |
def get_synonyms_nltk(word, pos):
|
31 |
synsets = wordnet.synsets(word, pos=pos)
|
32 |
+
synonyms = set()
|
33 |
+
for synset in synsets:
|
34 |
+
for lemma in synset.lemmas():
|
35 |
+
if lemma.name() != word:
|
36 |
+
synonyms.add(lemma.name())
|
37 |
+
return list(synonyms)
|
38 |
+
|
39 |
+
# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
|
40 |
+
def capitalize_sentences_and_nouns(text):
|
41 |
+
doc = nlp(text)
|
42 |
+
corrected_text = []
|
43 |
+
|
44 |
+
for sent in doc.sents:
|
45 |
+
sentence = []
|
46 |
+
for token in sent:
|
47 |
+
if token.i == sent.start: # First word of the sentence
|
48 |
+
sentence.append(token.text.capitalize())
|
49 |
+
elif token.pos_ == "PROPN": # Proper noun
|
50 |
+
sentence.append(token.text.capitalize())
|
51 |
+
else:
|
52 |
+
sentence.append(token.text)
|
53 |
+
corrected_text.append(' '.join(sentence))
|
54 |
+
|
55 |
+
return ' '.join(corrected_text)
|
56 |
+
|
57 |
+
# Function to correct tense errors in a sentence (Tense Correction)
|
58 |
+
def correct_tense_errors(text):
|
59 |
+
doc = nlp(text)
|
60 |
+
corrected_text = []
|
61 |
+
|
62 |
+
for token in doc:
|
63 |
+
if token.pos_ == "VERB":
|
64 |
+
# Check if verb is in its base form
|
65 |
+
if token.tag_ == "VB" and token.text.lower() not in ["be", "have", "do"]:
|
66 |
+
# Attempt to correct verb form based on sentence context
|
67 |
+
context = " ".join([t.text for t in doc if t.i != token.i])
|
68 |
+
corrected_text.append(token.lemma_)
|
69 |
+
else:
|
70 |
+
corrected_text.append(token.text)
|
71 |
+
else:
|
72 |
+
corrected_text.append(token.text)
|
73 |
+
|
74 |
+
return ' '.join(corrected_text)
|
75 |
+
|
76 |
+
# Function to correct singular/plural errors (Singular/Plural Correction)
|
77 |
+
def correct_singular_plural_errors(text):
|
78 |
+
doc = nlp(text)
|
79 |
+
corrected_text = []
|
80 |
+
|
81 |
+
# Create a context dictionary for singular/plural determination
|
82 |
+
context = defaultdict(int)
|
83 |
+
for token in doc:
|
84 |
+
if token.pos_ == "NOUN":
|
85 |
+
# Track context for noun usage
|
86 |
+
if token.tag_ == "NNS":
|
87 |
+
context['plural'] += 1
|
88 |
+
elif token.tag_ == "NN":
|
89 |
+
context['singular'] += 1
|
90 |
+
|
91 |
+
for token in doc:
|
92 |
+
if token.pos_ == "NOUN":
|
93 |
+
if token.tag_ == "NN": # Singular noun
|
94 |
+
if context['plural'] > context['singular']:
|
95 |
+
corrected_text.append(token.lemma_ + 's')
|
96 |
+
else:
|
97 |
+
corrected_text.append(token.text)
|
98 |
+
elif token.tag_ == "NNS": # Plural noun
|
99 |
+
if context['singular'] > context['plural']:
|
100 |
+
corrected_text.append(token.lemma_)
|
101 |
+
else:
|
102 |
+
corrected_text.append(token.text)
|
103 |
+
else:
|
104 |
+
corrected_text.append(token.text)
|
105 |
+
else:
|
106 |
+
corrected_text.append(token.text)
|
107 |
+
|
108 |
+
return ' '.join(corrected_text)
|
109 |
+
|
110 |
+
# Function to check and correct article errors
|
111 |
+
def correct_article_errors(text):
|
112 |
+
doc = nlp(text)
|
113 |
+
corrected_text = []
|
114 |
+
for token in doc:
|
115 |
+
if token.text in ['a', 'an']:
|
116 |
+
next_token = token.nbor(1)
|
117 |
+
if token.text == "a" and next_token.text[0].lower() in "aeiou":
|
118 |
+
corrected_text.append("an")
|
119 |
+
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
120 |
+
corrected_text.append("a")
|
121 |
+
else:
|
122 |
+
corrected_text.append(token.text)
|
123 |
+
else:
|
124 |
+
corrected_text.append(token.text)
|
125 |
+
return ' '.join(corrected_text)
|
126 |
|
127 |
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
128 |
def paraphrase_with_spacy_nltk(text):
|
|
|
132 |
for token in doc:
|
133 |
# Map SpaCy POS tags to WordNet POS tags
|
134 |
pos = None
|
135 |
+
if token.pos_ == "NOUN":
|
136 |
pos = wordnet.NOUN
|
137 |
+
elif token.pos_ == "VERB":
|
138 |
pos = wordnet.VERB
|
139 |
+
elif token.pos_ == "ADJ":
|
140 |
pos = wordnet.ADJ
|
141 |
+
elif token.pos_ == "ADV":
|
142 |
pos = wordnet.ADV
|
143 |
|
144 |
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
|
145 |
|
146 |
# Replace with a synonym only if it makes sense
|
147 |
+
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}:
|
148 |
paraphrased_words.append(synonyms[0])
|
149 |
else:
|
150 |
paraphrased_words.append(token.text)
|
151 |
|
152 |
+
return ' '.join(paraphrased_words)
|
|
|
|
|
|
|
153 |
|
154 |
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
|
155 |
def paraphrase_and_correct(text):
|
156 |
# Step 1: Paraphrase the text
|
157 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
158 |
|
159 |
+
# Step 2: Apply grammatical corrections on the paraphrased text
|
160 |
+
corrected_text = correct_article_errors(paraphrased_text)
|
161 |
+
corrected_text = capitalize_sentences_and_nouns(corrected_text)
|
162 |
+
corrected_text = correct_singular_plural_errors(corrected_text)
|
163 |
+
final_text = correct_tense_errors(corrected_text)
|
164 |
|
165 |
+
return final_text
|
166 |
|
167 |
# Gradio app setup with two tabs
|
168 |
with gr.Blocks() as demo:
|