File size: 6,373 Bytes
cfaf614
2fc5fd9
cfaf614
 
 
 
 
 
dd84c16
cfaf614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd84c16
cfaf614
dd84c16
 
 
 
 
 
 
 
cfaf614
 
dd84c16
cfaf614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd84c16
 
 
 
 
cfaf614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd84c16
cfaf614
 
 
 
 
 
 
dd84c16
 
cfaf614
 
 
 
 
 
dd84c16
 
 
cfaf614
 
 
 
 
 
dd84c16
cfaf614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd84c16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from spellchecker import SpellChecker
import re

# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")

# Initialize the spell checker
spell = SpellChecker()

# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')

# Ensure the SpaCy model is installed
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
    res = pipeline_en(text)[0]
    return res['label'], res['score']

# Function to remove redundant and meaningless words
def remove_redundant_words(text):
    doc = nlp(text)
    meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
    filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
    return ' '.join(filtered_text)

# Function to fix spacing before punctuation
def fix_punctuation_spacing(text):
    # Remove spaces before commas, periods, question marks, etc.
    text = re.sub(r'\s+([,.\'!?:])', r'\1', text)
    return text

# Function to fix possessives like "Earth's"
def fix_possessives(text):
    # Simple rule to catch possessives and correct spacing
    text = re.sub(r'(\w)\s\'\s?s', r"\1's", text)
    return text

# Function to capitalize the first letter of sentences and proper nouns
def capitalize_sentences_and_nouns(text):
    doc = nlp(text)
    corrected_text = []

    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start:  # First word of the sentence
                sentence.append(token.text.capitalize())
            elif token.pos_ == "PROPN":  # Proper noun
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text)
        corrected_text.append(' '.join(sentence))

    return ' '.join(corrected_text)

# Function to force capitalization of the first letter of every sentence
def force_first_letter_capital(text):
    sentences = text.split(". ")
    capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
    return ". ".join(capitalized_sentences)

# Function to correct tense errors in a sentence
def correct_tense_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
            lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
            corrected_text.append(lemma)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to check and correct article errors
def correct_article_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.text in ['a', 'an']:
            next_token = token.nbor(1)
            if token.text == "a" and next_token.text[0].lower() in "aeiou":
                corrected_text.append("an")
            elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
                corrected_text.append("a")
            else:
                corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to ensure subject-verb agreement
def ensure_subject_verb_agreement(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
            if token.tag_ == "NN" and token.head.tag_ != "VBZ":  # Singular noun, should use singular verb
                corrected_text.append(token.head.lemma_ + "s")
            elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":  # Plural noun, should not use singular verb
                corrected_text.append(token.head.lemma_)
        corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to correct spelling errors
def correct_spelling(text):
    words = text.split()
    corrected_words = []
    for word in words:
        corrected_word = spell.correction(word)
        if corrected_word is not None:
            corrected_words.append(corrected_word)
        else:
            corrected_words.append(word)  # Keep the original word if correction is None
    return ' '.join(corrected_words)

# Main function for paraphrasing and grammar correction
def paraphrase_and_correct(text):
    # Remove meaningless or redundant words first
    cleaned_text = remove_redundant_words(text)
    
    # Capitalize sentences and nouns
    paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
    
    # Ensure first letter of each sentence is capitalized
    paraphrased_text = force_first_letter_capital(paraphrased_text)
    
    # Apply grammatical corrections
    paraphrased_text = correct_article_errors(paraphrased_text)
    paraphrased_text = correct_tense_errors(paraphrased_text)
    paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
    
    # Fix punctuation spacing and possessives
    paraphrased_text = fix_punctuation_spacing(paraphrased_text)
    paraphrased_text = fix_possessives(paraphrased_text)
    
    # Correct spelling errors
    paraphrased_text = correct_spelling(paraphrased_text)
    
    return paraphrased_text

# Gradio app setup
with gr.Blocks() as demo:
    with gr.Tab("AI Detection"):
        t1 = gr.Textbox(lines=5, label='Text')
        button1 = gr.Button("πŸ€– Predict!")
        label1 = gr.Textbox(lines=1, label='Predicted Label πŸŽƒ')
        score1 = gr.Textbox(lines=1, label='Prob')

        button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])

    with gr.Tab("Paraphrasing & Grammar Correction"):
        t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
        button2 = gr.Button("πŸ”„ Paraphrase and Correct")
        result2 = gr.Textbox(lines=5, label='Corrected Text')

        button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)

demo.launch(share=True)