Spaces:
Sleeping
Sleeping
File size: 6,373 Bytes
cfaf614 2fc5fd9 cfaf614 dd84c16 cfaf614 dd84c16 cfaf614 dd84c16 cfaf614 dd84c16 cfaf614 dd84c16 cfaf614 dd84c16 cfaf614 dd84c16 cfaf614 dd84c16 cfaf614 dd84c16 cfaf614 dd84c16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from spellchecker import SpellChecker
import re
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Initialize the spell checker
spell = SpellChecker()
# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Function to remove redundant and meaningless words
def remove_redundant_words(text):
doc = nlp(text)
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
return ' '.join(filtered_text)
# Function to fix spacing before punctuation
def fix_punctuation_spacing(text):
# Remove spaces before commas, periods, question marks, etc.
text = re.sub(r'\s+([,.\'!?:])', r'\1', text)
return text
# Function to fix possessives like "Earth's"
def fix_possessives(text):
# Simple rule to catch possessives and correct spacing
text = re.sub(r'(\w)\s\'\s?s', r"\1's", text)
return text
# Function to capitalize the first letter of sentences and proper nouns
def capitalize_sentences_and_nouns(text):
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start: # First word of the sentence
sentence.append(token.text.capitalize())
elif token.pos_ == "PROPN": # Proper noun
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return ' '.join(corrected_text)
# Function to force capitalization of the first letter of every sentence
def force_first_letter_capital(text):
sentences = text.split(". ")
capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
return ". ".join(capitalized_sentences)
# Function to correct tense errors in a sentence
def correct_tense_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
corrected_text.append(lemma)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to check and correct article errors
def correct_article_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.text in ['a', 'an']:
next_token = token.nbor(1)
if token.text == "a" and next_token.text[0].lower() in "aeiou":
corrected_text.append("an")
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
corrected_text.append("a")
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to ensure subject-verb agreement
def ensure_subject_verb_agreement(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
if token.tag_ == "NN" and token.head.tag_ != "VBZ": # Singular noun, should use singular verb
corrected_text.append(token.head.lemma_ + "s")
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": # Plural noun, should not use singular verb
corrected_text.append(token.head.lemma_)
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to correct spelling errors
def correct_spelling(text):
words = text.split()
corrected_words = []
for word in words:
corrected_word = spell.correction(word)
if corrected_word is not None:
corrected_words.append(corrected_word)
else:
corrected_words.append(word) # Keep the original word if correction is None
return ' '.join(corrected_words)
# Main function for paraphrasing and grammar correction
def paraphrase_and_correct(text):
# Remove meaningless or redundant words first
cleaned_text = remove_redundant_words(text)
# Capitalize sentences and nouns
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
# Ensure first letter of each sentence is capitalized
paraphrased_text = force_first_letter_capital(paraphrased_text)
# Apply grammatical corrections
paraphrased_text = correct_article_errors(paraphrased_text)
paraphrased_text = correct_tense_errors(paraphrased_text)
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
# Fix punctuation spacing and possessives
paraphrased_text = fix_punctuation_spacing(paraphrased_text)
paraphrased_text = fix_possessives(paraphrased_text)
# Correct spelling errors
paraphrased_text = correct_spelling(paraphrased_text)
return paraphrased_text
# Gradio app setup
with gr.Blocks() as demo:
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Text')
button1 = gr.Button("π€ Predict!")
label1 = gr.Textbox(lines=1, label='Predicted Label π')
score1 = gr.Textbox(lines=1, label='Prob')
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
with gr.Tab("Paraphrasing & Grammar Correction"):
t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
button2 = gr.Button("π Paraphrase and Correct")
result2 = gr.Textbox(lines=5, label='Corrected Text')
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
demo.launch(share=True)
|