|
import numpy as np |
|
import gradio as gr |
|
from sentence_transformers import SentenceTransformer, util |
|
|
|
|
|
def load_model(model_name): |
|
return SentenceTransformer(model_name) |
|
|
|
|
|
def predict(model_name, original_sentence_input, *sentences_to_compare): |
|
model = load_model(model_name) |
|
result = { |
|
"Model Name": model_name, |
|
"Original Sentence": original_sentence_input, |
|
"Sentences to Compare": sentences_to_compare, |
|
"Similarity Scores": {} |
|
} |
|
|
|
if original_sentence_input and sentences_to_compare: |
|
sentences = [original_sentence_input] + list(sentences_to_compare) |
|
embeddings = model.encode(sentences) |
|
original_embedding = embeddings[0] |
|
|
|
for i, sentence in enumerate(sentences_to_compare, start=1): |
|
similarity_score = util.pytorch_cos_sim(original_embedding, embeddings[i]).item() |
|
result["Similarity Scores"][f"Sentence {i}"] = similarity_score |
|
|
|
return result |
|
|
|
|
|
model_name = gr.Textbox(value="sartifyllc/African-Cross-Lingua-Embeddings-Model", label="Model Name") |
|
original_sentence_input = gr.Textbox(lines=2, placeholder="Enter the original sentence here...", label="Original Sentence") |
|
sentence_to_compare_inputs = gr.Textbox(lines=2, placeholder="Enter the sentence you want to compare...", label="Sentence to Compare", elem_id="sentence_to_compare") |
|
|
|
inputs = [model_name, original_sentence_input, sentence_to_compare_inputs] |
|
outputs = gr.JSON(label="Detailed Similarity Scores") |
|
|
|
|
|
gr.Interface( |
|
fn=predict, |
|
title="African Cross-Lingua Embeddings Model's Demo", |
|
description="Compute the semantic similarity across various sentences among any African Languages using African-Cross-Lingua-Embeddings-Model.", |
|
inputs=inputs, |
|
outputs=outputs, |
|
cache_examples=False, |
|
allow_flagging="never" |
|
).launch(debug=True, share=True) |
|
|