File size: 2,971 Bytes
50fdd96
062d5b7
 
 
50fdd96
 
964330b
062d5b7
50fdd96
948505c
 
50fdd96
 
964330b
 
 
50fdd96
 
 
964330b
 
 
 
 
 
 
 
50fdd96
 
062d5b7
50fdd96
948505c
964330b
062d5b7
c92b6f6
 
 
 
 
 
 
bdd5c64
c92b6f6
bdd5c64
c92b6f6
bdd5c64
c92b6f6
 
50fdd96
062d5b7
50fdd96
bdd5c64
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
import gradio as gr
from sentence_transformers import SentenceTransformer, util

# Function to load the selected model
def load_model(model_name):
    return SentenceTransformer(model_name)

# Function to compute similarity and classify relationship
def predict(original_sentence_input, *sentences_to_compare):
    model_name = "sartifyllc/African-Cross-Lingua-Embeddings-Model"
    model = load_model(model_name)
    result = {
        "Model Name": model_name,
        "Original Sentence": original_sentence_input,
        "Sentences to Compare": sentences_to_compare,
        "Similarity Scores": {}
    }
    
    if original_sentence_input and sentences_to_compare:
        sentences = [original_sentence_input] + list(sentences_to_compare)
        embeddings = model.encode(sentences)
        original_embedding = embeddings[0]

        for i, sentence in enumerate(sentences_to_compare, start=1):
            similarity_score = util.pytorch_cos_sim(original_embedding, embeddings[i]).item()
            result["Similarity Scores"][f"Sentence {i}"] = similarity_score
    
    return result

# Define inputs and outputs for Gradio interface
model_name_display = gr.Markdown(value="**Model Name**: sartifyllc/African-Cross-Lingua-Embeddings-Model")
original_sentence_input = gr.Textbox(lines=2, placeholder="Enter the original sentence here...", label="Original Sentence")

# Initial sentence comparison inputs
sentence_to_compare_inputs = [
    gr.Textbox(lines=2, placeholder="Enter the sentence you want to compare...", label="Sentence to Compare 1"),
    gr.Textbox(lines=2, placeholder="Enter the sentence you want to compare...", label="Sentence to Compare 2"),
    gr.Textbox(lines=2, placeholder="Enter the sentence you want to compare...", label="Sentence to Compare 3")
]

# Function to dynamically update the interface
def update_interface(num_sentences):
    return [gr.Textbox(lines=2, placeholder="Enter the sentence you want to compare...", label=f"Sentence to Compare {i}") for i in range(1, num_sentences + 1)]

num_sentences_input = gr.Slider(minimum=1, maximum=10, step=1, value=3, label="Number of Sentences to Compare")

inputs = [model_name_display, original_sentence_input, num_sentences_input] + sentence_to_compare_inputs
outputs = gr.JSON(label="Detailed Similarity Scores")

# Create Gradio interface
def dynamic_interface(num_sentences):
    inputs_dynamic = [model_name_display, original_sentence_input, num_sentences_input] + update_interface(num_sentences)
    return gr.Interface(
        fn=predict,
        title="African Cross-Lingua Embeddings Model's Demo",
        description="Compute the semantic similarity across various sentences among any African Languages using African-Cross-Lingua-Embeddings-Model.",
        inputs=inputs_dynamic,
        outputs=outputs,
        live=True
    )

# Launch the interface with dynamic updates
interface = dynamic_interface(3)
interface.launch(debug=True, share=True)