Spaces:
Sleeping
Sleeping
File size: 12,626 Bytes
5f773d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
# Description: This file contains the main Streamlit application for the Resonate project.
# Run command: streamlit run app.py
import os
import pandas as pd
import streamlit as st
from dotenv import load_dotenv
from streamlit import session_state as ss
from streamlit_chat import message
from src.clustering.resonate_bert_summarizer import summarize_runner
from src.clustering.resonate_clustering import Clustering
from src.langchain.resonate_langchain_functions import LangChain
from src.utils.resonate_streamlitUtils import (
aws_transcribe,
convert_video_to_audio,
pinecone_init_upsert,
transcript_text_editor_minutes_to_hhmmss,
)
def initialize_session_state():
# Initialize API keys in session state if not present
if "api_keys" not in ss:
ss.api_keys = {}
ss.api_keys["openai_api_key"] = None
ss.api_keys["pinecone_api_key"] = None
ss.api_keys["aws_access_key"] = None
ss.api_keys["aws_secret_access_key"] = None
if "api_key_set" not in ss:
ss.api_key_set = False
if "add_meeting" not in ss:
ss.add_meeting = False
if "Clustering_obj" not in ss:
ss.Clustering_obj = Clustering()
# Initialize - Main Screen - Transcript Editor
if "transcript_speaker_editor" not in ss:
ss.transcript_speaker_editor = False
if "transcript_text_editor" not in ss:
ss.transcript_text_editor = False
if "meeting_name" not in ss:
ss.meeting_name = ""
if "df_transcript_speaker" not in ss:
ss.df_transcript_speaker = pd.DataFrame()
if "df_transcript_text" not in ss:
ss.df_transcript_text = pd.DataFrame()
if "updated_df" not in ss:
ss.updated_transcript_df_to_embed = pd.DataFrame()
if "chat_view" not in ss:
ss.chat_view = True
if "langchain_obj" not in ss and ss.api_key_set:
ss.langchain_obj = LangChain()
if "query" not in ss:
ss.query = ""
if "responses" not in ss:
ss["responses"] = ["How can I assist you?"]
if "requests" not in ss:
ss["requests"] = []
def chat_view():
st.header("Chat")
response_container = st.container()
textcontainer = st.container()
with textcontainer:
query = st.text_input(
"Chat Here",
placeholder="Message Resonate ... ",
value=ss.query,
key="query_input",
)
# Clear button
if st.button("Clear"):
ss.langchain_obj.conversation_bufw.memory.clear() # Clear conversation buffer
ss.query = ""
ss.requests = []
ss.responses = []
ss["responses"] = ["How can I assist you?"]
st.rerun()
elif query:
with st.spinner("typing..."):
uuid_list = ss.Clustering_obj.uuid_for_query(query=query)
print(f"Meeting Unique ID : {uuid_list}")
response = ss.langchain_obj.chat(
query=query, in_filter=uuid_list, complete_db_flag=False
)
response = response["response"]
ss.requests.append(query)
ss.responses.append(response)
ss.query = ""
with response_container:
if ss["responses"]:
for i in range(len(ss["responses"])):
message(ss["responses"][i], key=str(i))
if i < len(ss["requests"]):
message(
ss["requests"][i],
is_user=True,
key=str(i) + "_user",
)
def api_keys_input():
with st.form("keys_input_form"):
# Retrieve values from session state
openai_api_key = st.text_input(
"OpenAPI Key:",
type="password",
value=ss.api_keys.get(
"openai_api_key", ""
), # Use default value if key is not present
)
pinecone_api_key = st.text_input(
"Pinecone Key:",
type="password",
value=ss.api_keys.get(
"pinecone_api_key", ""
), # Use default value if key is not present
)
aws_access_key = st.text_input(
"AWS Access Key:",
type="password",
value=ss.api_keys.get(
"aws_access_key", ""
), # Use default value if key is not present
)
aws_secret_access_key = st.text_input(
"AWS Secret Access Key:",
type="password",
value=ss.api_keys.get(
"aws_secret_access_key", ""
), # Use default value if key is not present
)
# Add a button to save the keys
save_button = st.form_submit_button("Save API Keys")
if save_button:
# Update session state with provided keys
ss.api_keys["openai_api_key"] = openai_api_key
ss.api_keys["pinecone_api_key"] = pinecone_api_key
ss.api_keys["aws_access_key"] = aws_access_key
ss.api_keys["aws_secret_access_key"] = aws_secret_access_key
# Set environment variables only if the keys are not None
if openai_api_key:
os.environ["OPENAI_API_KEY"] = ss.api_keys["openai_api_key"]
if pinecone_api_key:
os.environ["PINECONE_API_KEY"] = ss.api_keys["pinecone_api_key"]
if aws_access_key:
os.environ["AWS_ACCESS_KEY"] = ss.api_keys["aws_access_key"]
if aws_secret_access_key:
os.environ["AWS_SECRET_ACCESS_KEY"] = ss.api_keys[
"aws_secret_access_key"
]
ss.api_key_set = True
print("API KEYS ARE: ", ss.api_keys)
st.rerun()
def add_meeting():
with st.form("add_meeting_form"):
uploaded_file = st.file_uploader("Choose a file", type=["wav", "mp4"])
# Get user input
meeting_name = st.text_input("Enter Meeting Name:")
save_meeting_button = st.form_submit_button("Save Meeting")
if save_meeting_button:
if not meeting_name:
st.warning("Please enter Meeting Name.")
elif uploaded_file is None:
st.warning("Please upload a meeting recording.")
elif meeting_name and uploaded_file:
with st.spinner("Processing..."):
file_name = uploaded_file.name.replace(" ", "_")
if file_name.endswith(".mp4") or file_name.endswith(".mpeg4"):
print("in video")
with open("data/videoFiles/" + file_name, "wb") as f:
f.write(uploaded_file.getbuffer())
f.close()
# Convert video file to audio file
audio_path = "data/audioFiles/" + file_name[:-4] + ".wav"
convert_video_to_audio(
"data/videoFiles/" + file_name, audio_path
)
file_name = file_name[:-4] + ".wav"
elif file_name.endswith(".wav"):
print("in audio")
with open("data/audioFiles/" + file_name, "wb") as f:
f.write(uploaded_file.getbuffer())
f.close()
ss.df_transcript_speaker = aws_transcribe(file_name)
ss.meeting_name = meeting_name
ss.transcript_speaker_editor = True
def transcript_speaker_editor():
ss.add_meeting = False
with st.form("transcript_speaker_editor_form"):
st.write("Transcript Speaker Editor:")
st.dataframe(ss.df_transcript_speaker)
df = ss.df_transcript_speaker.copy(deep=True)
# Create a list of unique speaker labels
speaker_labels = df["speaker_label"].unique()
# Create a dictionary to store the updated values
updated_speaker_names = {}
# Display text input boxes for each speaker label
for speaker_label in speaker_labels:
new_name = st.text_input(
f"Edit speaker label '{speaker_label}'", speaker_label
)
updated_speaker_names[speaker_label] = new_name
# Update the DataFrame with the new speaker label names
for old_name, new_name in updated_speaker_names.items():
df["speaker_label"] = df["speaker_label"].replace(old_name, new_name)
update_speaker_button = st.form_submit_button("Update Speakers")
if update_speaker_button and df is not None:
ss.df_transcript_speaker = pd.DataFrame()
ss.df_transcript_text = df.copy(deep=True)
del df
ss.transcript_text_editor = True
ss.transcript_speaker_editor = False
st.rerun()
# Function to update the text column
def transcript_text_editor_update_text(row_index, new_text):
ss.updated_transcript_df_to_embed.at[row_index, "text"] = new_text
def transcript_text_editor():
ss.transcript_speaker_editor = False
st.write("Transcript Text Editor:")
st.write(ss.df_transcript_text)
df = ss.df_transcript_text.copy(deep=True)
ss.updated_transcript_df_to_embed = df.copy(deep=True)
# Convert start_time and end_time to HH:MM:SS format
df["start_time"] = df["start_time"].apply(transcript_text_editor_minutes_to_hhmmss)
df["end_time"] = df["end_time"].apply(transcript_text_editor_minutes_to_hhmmss)
row_index = st.number_input(
"Enter the row index:",
min_value=0,
max_value=len(df) - 1,
value=0,
step=1,
)
new_text = st.text_area("Enter the new text:", df.at[row_index, "text"])
update_text_button_inner = st.button("Update Text")
if update_text_button_inner:
transcript_text_editor_update_text(row_index, new_text)
st.success("Text updated successfully!")
# Display the updated dataframe
st.header("Updated Transcript")
st.table(ss.updated_transcript_df_to_embed)
update_text_button = st.button("Finish Transcript Editing")
if update_text_button:
with st.spinner("Uploading..."):
ss.df_transcript_text = pd.DataFrame()
meeting_summary, meeting_uuid = summarize_runner(
ss.updated_transcript_df_to_embed
)
ss.Clustering_obj.create_Cluster()
pinecone_init_upsert(
ss.updated_transcript_df_to_embed,
meeting_title=ss.meeting_name,
meeting_summary=meeting_summary,
meeting_uuid=meeting_uuid,
)
ss.meeting_name = "unnamed"
st.success("Pinecone upsert completed successfully!")
ss.transcript_text_editor = False
ss.updated_transcript_df_to_embed = pd.DataFrame()
ss.chat_view = True
st.rerun()
def init_streamlit():
initialize_session_state()
if os.path.exists("./config/.env"):
load_dotenv("./config/.env")
else:
print(".env file does not exist, API keys must be set manually.")
# Set initial state of the sidebar
st.set_page_config(
initial_sidebar_state="collapsed",
layout="wide",
)
st.title("RESONATE")
# Initializing sidebar and its components
with st.sidebar:
api_keys_input()
if st.button("Upload Meeting / Chat"):
ss.add_meeting = not ss.add_meeting
ss.chat_view = not ss.chat_view
ss.transcript_speaker_editor = False
ss.transcript_text_editor = False
if not ss.api_key_set:
st.header("Pre-requisites:")
st.write("Please set the API keys to enable the chat view.")
st.write("Please ensure that you have already run the 'pinecone_sample_dataloader.py'")
if ss.add_meeting and ss.api_key_set:
add_meeting()
if ss.transcript_speaker_editor:
transcript_speaker_editor()
if ss.df_transcript_text is not None and ss.transcript_text_editor:
transcript_text_editor()
if ss.chat_view and ss.api_key_set:
chat_view() # Chat view
if __name__ == "__main__":
# Please ensure you have data loaded in Pinecone before running the Streamlit app
# Please refer https://github.com/SartajBhuvaji/Resonate/blob/master/init_one_time_utils/PREREQUISITE.md
init_streamlit()
# Test questions:
# What was discussed about cyberbullying?
# What is one new feature planned for GitLab's code search?
# What is the goal of defining maintainability for the new diffs architecture? |