Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from html_template import css, bot_template, user_template | |
from langchain.llms import HuggingFaceHub | |
import os | |
FREE_RUN = False | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vector_store(text_chunks): | |
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") if FREE_RUN else OpenAIEmbeddings() | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
def get_conversation_chain(vectorstore): | |
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={ | |
"temperature": 0.5, "max_length": 512}) if FREE_RUN else ChatOpenAI() | |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
return conversation_chain | |
def handle_userinput(user_question): | |
response = st.session_state.conversation({'question': user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.write(user_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
else: | |
st.write(bot_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
def main(): | |
st.set_page_config(page_title="WhisperChain π", page_icon=":link:") | |
st.write(css, unsafe_allow_html=True) | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("WhisperChain π") | |
user_question = st.text_input("Ask a question about your documents.") | |
if user_question: | |
handle_userinput(user_question) | |
with st.sidebar: | |
### | |
OPENAI_API_KEY = st.sidebar.text_input("Enter OpenAI API Key", type="password") | |
HUGGINGFACEHUB_API_KEY = st.sidebar.text_input("Enter Hugging Face API Key", type="password") | |
if not OPENAI_API_KEY or not HUGGINGFACEHUB_API_KEY: | |
st.sidebar.error("Please enter your API keys") | |
st.stop() | |
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY | |
os.environ["HUGGINGFACEHUB_API_KEY"] = HUGGINGFACEHUB_API_KEY | |
#Toggle free run | |
global FREE_RUN | |
FREE_RUN = st.sidebar.checkbox("Free run", value=False) | |
### | |
pdf_docs = st.file_uploader( | |
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
if st.button("Process"): | |
if pdf_docs: | |
with st.spinner("Processing"): | |
# get pdf text | |
raw_text = get_pdf_text(pdf_docs) | |
# get the text chunks | |
text_chunks = get_text_chunks(raw_text) | |
# create vector store | |
vector_store = get_vector_store(text_chunks) | |
# create conversation chain | |
st.session_state.conversation = get_conversation_chain(vector_store) | |
else: | |
st.error("Please upload at least one PDF") | |
if __name__ == '__main__': | |
main() | |