Spaces:
Running
Running
// IMPORT LIBRARIES TOOLS | |
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]'; | |
// skip local model check | |
env.allowLocalModels = false; | |
// GLOBAL VARIABLES | |
let PREPROMPT = `Please complete the phrase and fill in any [MASK]: ` | |
let PROMPT_INPUT = `The woman has a job as a...` // a field for writing or changing a text value | |
let pField | |
let outText | |
// RUN TEXT-GEN MODEL | |
async function textGenTask(pre, prompt){ | |
console.log('text-gen task initiated') | |
// preprompt not working, fix later | |
// let INPUT = pre + prompt | |
let INPUT = prompt | |
// PICK MODEL | |
let MODEL = 'Xenova/LaMini-Cerebras-590M' | |
// const = modelsList = ['Xenova/LaMini-Cerebras-256M', 'Xenova/TinyLlama-1.1B-Chat-v1.0', 'Xenova/distilgpt2', 'Xenova/bloom-560m'] | |
const pipe = await pipeline('text-generation', MODEL) | |
// RUN INPUT THROUGH MODEL, | |
var out = await pipe(INPUT, { max_new_tokens: 60, top_k: 90, repetition_penalty: 1.5 }) | |
// setting hyperparameters | |
// max_new_tokens: 256, top_k: 50, temperature: 0.7, do_sample: true, no_repeat_ngram_size: 2, | |
console.log(await out) | |
console.log('text-gen task completed') | |
// PARSE RESULTS as a list of outputs, two different ways depending on the model | |
let OUTPUT_LIST = [] // a blank array to store the results from the model | |
// parsing of output | |
await out.forEach(o => { | |
console.log(o) | |
OUTPUT_LIST.push(o.generated_text) | |
}) | |
// alternate format for parsing, for chat model type | |
// await out.choices.forEach(o => { | |
// console.log(o) | |
// OUTPUT_LIST.push(o.message.content) | |
// }) | |
console.log(OUTPUT_LIST) | |
console.log('text-gen parsing complete') | |
return await OUTPUT_LIST | |
// return await out | |
} | |
// RUN FILL-IN MODEL | |
async function fillInTask(input){ | |
console.log('fill-in task initiated') | |
const pipe = await pipeline('fill-mask', 'Xenova/bert-base-uncased'); | |
var out = await pipe(input); | |
console.log(await out) // yields { score, sequence, token, token_str } for each result | |
let OUTPUT_LIST = [] // a blank array to store the results from the model | |
// parsing of output | |
await out.forEach(o => { | |
console.log(o) // yields { score, sequence, token, token_str } for each result | |
OUTPUT_LIST.push(o.sequence) // put only the full sequence in a list | |
}) | |
console.log(await OUTPUT_LIST) | |
console.log('fill-in task completed') | |
// return await out | |
return await OUTPUT_LIST | |
} | |
// // PROCESS MODEL OUTPUT | |
// // a generic function to pass in different model task functions | |
// async function getOutputs(task){ | |
// let output = await task | |
// await output.forEach(o => { | |
// OUTPUT_LIST.push(o.sequence) // put only the full sequence in a list | |
// }) | |
// console.log(OUTPUT_LIST) | |
// return await OUTPUT_LIST | |
// } | |
// await getOutputs(fillInTask()) // getOutputs will later connect to the interface to display results | |
//// p5.js Instance | |
new p5(function (p5){ | |
p5.setup = function(){ | |
p5.noCanvas() | |
console.log('p5 instance loaded') | |
makeTextDisplay() | |
makeFields() | |
makeButtons() | |
} | |
p5.draw = function(){ | |
// | |
} | |
function makeTextDisplay(){ | |
let title = p5.createElement('h1','p5.js Critical AI Prompt Battle') | |
let intro = p5.createP(`This tool lets you explore several AI prompts results at once.`) | |
p5.createP(`Use it to explore what models 'know' about various concepts, communities, and cultures. For more information on prompt programming and critical AI, see [Tutorial & extra info][TO-DO][XXX]`) | |
} | |
function makeFields(){ | |
pField = p5.createInput(PROMPT_INPUT) // turns the string into an input; now access the text via PROMPT_INPUT.value() | |
pField.size(700) | |
pField.attribute('label', `Write a text prompt with one [MASK] that the model will fill in.`) | |
p5.createP(pField.attribute('label')) | |
pField.addClass("prompt") | |
// pField.value(PROMPT_INPUT) | |
// console.log(pField.value()) | |
} | |
function makeButtons(){ | |
let submitButton = p5.createButton("SUBMIT") | |
submitButton.size(170) | |
submitButton.class('submit') | |
submitButton.mousePressed(displayResults) | |
// also make results placeholder | |
let outHeader = p5.createElement('h3',"Results") | |
outText = p5.createP('').id('results') | |
} | |
async function displayResults(){ | |
console.log('submitButton pressed') | |
// insert waiting dots into results space of interface | |
outText.html('...', false) | |
PROMPT_INPUT = pField.value() // grab update to the prompt if it's been changed | |
console.log("latest prompt: ", PROMPT_INPUT) | |
// call the function that runs the model for the task of your choice here | |
// make sure to use the PROMPT_INPUT as a parameter, or also the PREPROMPT if valid for that task | |
let outs = await textGenTask(PREPROMPT, PROMPT_INPUT) | |
console.log(outs) | |
// insert the model outputs into the paragraph | |
await outText.html(outs, false) // false replaces text instead of appends?? | |
} | |
}); | |