Spaces:
Running
Running
// IMPORT LIBRARIES TOOLS | |
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]'; | |
// skip local model check | |
env.allowLocalModels = false; | |
// GLOBAL VARIABLES | |
var PREPROMPT = `Please continue the story, and fill any [MASK] with your own words:` | |
// let PREPROMPT = `Please complete the phrase and fill in any [MASK]: ` | |
var PROMPT_INPUT = `The [BLANK] has a job as a [MASK] but...` // a field for writing or changing a text value | |
var pField // an html element for the prompt | |
var outText // an html element for the results | |
var blanksArray = [] | |
// a list for all the variable inputs, e.g. ["woman", "man", "non-binary person"] | |
// RUN TEXT-GEN MODEL | |
async function textGenTask(pre, prompt, blanks){ | |
console.log('text-gen task initiated') | |
// Create concatenated prompt array including preprompt and all variable prompts | |
let promptArray = [] | |
promptArray.push(pre) // add preprompt to the list of prompts | |
// fill in blanks from our sample prompt and make new prompts using our variable list 'blanksArray' | |
blanks.forEach(b => { | |
console.log(b.value()) | |
let p = prompt.replace('[BLANK]', b.value()) // replace the string segment with an item from the blanksArray | |
promptArray.push(p) // add the new prompt to the list we created | |
}) | |
// create combined fill prompt | |
let INPUT = promptArray.toString() | |
console.log(INPUT) | |
// let INPUT = pre + prompt // simple concatenated input | |
// let INPUT = prompt // basic prompt input | |
// PICK MODEL | |
let MODEL = 'Xenova/flan-alpaca-large' | |
// MODELS LIST | |
// - Xenova/bloom-560m | |
// - Xenova/distilgpt2 | |
// - Xenova/LaMini-Cerebras-256M | |
// - Xenova/gpt-neo-125M // not working well | |
// - Xenova/llama2.c-stories15M // only fairytails | |
// - webml/TinyLlama-1.1B-Chat-v1.0 | |
// - Xenova/TinyLlama-1.1B-Chat-v1.0 | |
// - Xenova/flan-alpaca-large //text2text | |
// const pipe = await pipeline('text-generation', MODEL) //different task type, also for text generation | |
const pipe = await pipeline('text2text-generation', MODEL) | |
var hyperparameters = { max_new_tokens: 60, top_k: 90, repetition_penalty: 1.5 } | |
// setting hyperparameters | |
// max_new_tokens: 256, top_k: 50, temperature: 0.7, do_sample: true, no_repeat_ngram_size: 2, | |
// , num_return_sequences: 2 (must be 1?) | |
// let OUTPUT_LIST = [] // a blank array to store the results from the model | |
// change model run to iterative for each prompt generated locally — will be more expensive?? | |
// promptArray.forEach(async i => { | |
// RUN INPUT THROUGH MODEL, | |
var out = await pipe(INPUT, hyperparameters) | |
console.log(await out) | |
console.log('text-gen task completed') | |
// PARSE RESULTS as a list of outputs, two different ways depending on the model | |
// OUTPUT_LIST.push(out[0].generated_text) | |
// }) //this was a loop to wrap model run multiple times | |
// parsing of output | |
// await out.forEach(o => { | |
// console.log(o) | |
// OUTPUT_LIST.push(o.generated_text) | |
// }) | |
// alternate format for parsing, for chat model type | |
// await out.choices.forEach(o => { | |
// console.log(o) | |
// OUTPUT_LIST.push(o.message.content) | |
// }) | |
let OUTPUT_LIST = out[0].generated_text //not a list anymore just one result | |
console.log(OUTPUT_LIST) | |
console.log('text-gen parsing complete') | |
return await OUTPUT_LIST | |
// return await out | |
} | |
// RUN FILL-IN MODEL | |
async function fillInTask(input){ | |
console.log('fill-in task initiated') | |
// MODELS LIST | |
// - Xenova/bert-base-uncased | |
const pipe = await pipeline('fill-mask', 'Xenova/bert-base-uncased'); | |
var out = await pipe(input); | |
console.log(await out) // yields { score, sequence, token, token_str } for each result | |
let OUTPUT_LIST = [] // a blank array to store the results from the model | |
// parsing of output | |
await out.forEach(o => { | |
console.log(o) // yields { score, sequence, token, token_str } for each result | |
OUTPUT_LIST.push(o.sequence) // put only the full sequence in a list | |
}) | |
console.log(await OUTPUT_LIST) | |
console.log('fill-in task completed') | |
// return await out | |
return await OUTPUT_LIST | |
} | |
//// p5.js Instance | |
new p5(function (p5){ | |
p5.setup = function(){ | |
p5.noCanvas() | |
console.log('p5 instance loaded') | |
makeTextDisplay() | |
makeFields() | |
makeButtons() | |
} | |
p5.draw = function(){ | |
// | |
} | |
function makeTextDisplay(){ | |
const title = p5.createElement('h1','p5.js Critical AI Prompt Battle') | |
const intro = p5.createP(`This tool lets you explore several AI prompts results at once.`) | |
p5.createP(`Use it to explore what models 'know' about various concepts, communities, and cultures. For more information on prompt programming and critical AI, see [Tutorial & extra info][TO-DO][XXX]`) | |
} | |
function makeFields(){ | |
pField = p5.createInput(PROMPT_INPUT) // turns the string into an input; now access the text via PROMPT_INPUT.value() | |
pField.size(700) | |
pField.attribute('label', `Write a text prompt with one [MASK] that the model will fill in.`) | |
p5.createP(pField.attribute('label')) | |
pField.addClass("prompt") | |
const fieldsDiv = p5.createDiv() | |
fieldsDiv.id('fieldsDiv') | |
addField() | |
} | |
function addField(){ | |
let f = p5.createInput("") | |
f.class("blank") | |
f.parent("#fieldsDiv") | |
// f.changed() | |
// f.input(blanksArray.push(f)) | |
blanksArray.add(f) | |
// blanksArray.push(f) | |
console.log("made field") | |
// Cap the number of fields, avoids token limit in prompt | |
let blanks = document.querySelectorAll(".blank") | |
if (blanks.length > 5){ | |
console.log(blanks.length) | |
addButton.style('visibility','hidden') | |
} | |
} | |
function makeButtons(){ | |
// press to run model | |
const submitButton = p5.createButton("SUBMIT") | |
submitButton.size(170) | |
submitButton.class('submit') | |
submitButton.mousePressed(displayResults) | |
// press to add more blanks to fill in | |
const addButton = p5.createButton("more blanks") | |
addButton.size(170) | |
// addButton.position(220,500) | |
addButton.mousePressed(addField) | |
// also make results placeholder | |
const outHeader = p5.createElement('h3',"Results") | |
outText = p5.createP('').id('results') | |
} | |
async function displayResults(){ | |
console.log('submitButton pressed') | |
// insert waiting dots into results space of interface | |
outText.html('...', false) | |
PROMPT_INPUT = pField.value() // grab update to the prompt if it's been changed | |
console.log("latest prompt: ", PROMPT_INPUT) | |
let blanksValues = blanksArray.map(({value}) => value) | |
console.log(blanksValues) | |
// blanksArray.forEach(b => console.log(b.value())) | |
// // call the function that runs the model for the task of your choice here | |
// // make sure to use the PROMPT_INPUT as a parameter, or also the PREPROMPT if valid for that task | |
// // let outs = await textGenTask(PREPROMPT, PROMPT_INPUT, blanksArray) | |
// console.log(outs) | |
// // insert the model outputs into the paragraph | |
// await outText.html(outs, false) // false replaces text instead of appends | |
} | |
}); | |