File size: 14,211 Bytes
1ee4720 89bee59 a0c3a93 473e493 6eb0047 89bee59 6eb0047 cc195e8 52330f2 efa39e6 d4c0968 efa39e6 473e493 efa39e6 473e493 efa39e6 473e493 efa39e6 37c8ccd 1ee4720 89bee59 581179a 0bb49c6 b232be7 456b82c 581179a 37c8ccd 581179a 37c8ccd 581179a 37c8ccd 581179a e871332 581179a e871332 581179a 47d8484 581179a 2897982 581179a 1a66e6f d59354e 1a66e6f 581179a 1a66e6f 47d8484 1a66e6f bf21364 2897982 1a66e6f 581179a 47d8484 1a66e6f 47d8484 d59354e aabf015 47d8484 0bb49c6 16186bd 44e71d7 47d8484 1e5c489 47d8484 0bb49c6 44e71d7 16186bd 1e5c489 47d8484 581179a 47d8484 581179a 6e96799 d59354e 581179a 47d8484 0bb49c6 47d8484 1a66e6f 47d8484 94d8833 456b82c 28962fb 47d8484 cf748ec dcfef54 0bb49c6 dcfef54 e8e2063 28962fb cf748ec 456b82c 28962fb 0bb49c6 07cff5b 2b5391c cf748ec 456b82c cf748ec 1bf613a 283a922 1e67923 33b753f 283a922 e19f5d0 581179a 6eb0047 1e67923 6eb0047 1e67923 6eb0047 1e67923 6eb0047 1e67923 6eb0047 1e67923 6eb0047 1e67923 37c8ccd 456b82c 37c8ccd 456b82c a6cd989 456b82c a6cd989 456b82c 37c8ccd 456b82c 37c8ccd 456b82c f9569e7 456b82c 37c8ccd 456b82c 37c8ccd 456b82c 37c8ccd 630ac98 62c2dcb 28962fb e871332 3d91a45 87f1324 1ee4720 87f1324 1ee4720 4af8f9e cc195e8 d4c0968 cc195e8 4af8f9e f9569e7 4af8f9e cc195e8 4af8f9e cc195e8 f9569e7 cc195e8 4af8f9e cc195e8 4af8f9e cc195e8 4af8f9e cc195e8 4af8f9e cc195e8 4af8f9e cc195e8 d4c0968 cc195e8 4af8f9e cc195e8 4af8f9e 456b82c cf748ec 6eb0047 456b82c 6eb0047 456b82c 52330f2 6eb0047 456b82c 6eb0047 456b82c 52330f2 456b82c 6eb0047 cf748ec 6eb0047 cf748ec 6eb0047 cf748ec 6eb0047 89bee59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
// IMPORT LIBRARIES TOOLS
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';
// Since we will download the model from the Hugging Face Hub, we can skip the local model check
// skip local model check
env.allowLocalModels = false;
/// AUTHORIZATION
// import { textGeneration } from 'https://esm.sh/@huggingface/[email protected]/+esm';
// import { oauthLoginUrl, oauthHandleRedirectIfPresent } from 'https://esm.sh/@huggingface/[email protected]';
// const oauthResult = await oauthHandleRedirectIfPresent();
// if (!oauthResult) {
// // If the user is not logged in, redirect to the login page
// window.location.href = await oauthLoginUrl();
// }
// // You can use oauthResult.accessToken, oauthResult.accessTokenExpiresAt and oauthResult.userInfo
// // console.log(oauthResult);
// const HF_TOKEN = window.huggingface.variables.OAUTH_CLIENT_SECRET
// // const HF_TOKEN = oauthResult.accessToken
// console.log(HF_TOKEN)
// import { HfInference } from 'https://esm.sh/@huggingface/inference';
// const inference = new HfInference(HF_TOKEN);
// GLOBAL VARIABLES
// establish global variables to reference later
var promptInput
var blanksArray = []
var resultsArray = []
///// p5 STUFF
// create an instance of the p5 class as a workspace for all your p5.js code
new p5(function (p5) {
p5.setup = function(){
console.log('p5 loaded')
p5.noCanvas()
makeInterface()
}
p5.draw = function(){
//
}
window.onload = function(){
console.log('dom and js loaded')
}
let fieldsDiv = document.querySelector("#blanks")
function makeInterface(){
console.log('reached makeInterface')
let title = p5.createElement('h1', 'p5.js Critical AI Prompt Battle')
// title.position(0,50)
p5.createElement('p',`This tool lets you run several AI chat prompts at once and compare their results. Use it to explore what models 'know' about various concepts, communities, and cultures. For more information on prompt programming and critical AI, see [Tutorial & extra info][TO-DO][XXX]`)
// .position(0,100)
promptInput = p5.createInput("")
// promptInput.position(0,160)
promptInput.size(600);
promptInput.attribute('label', `Write a text prompt with at least one [BLANK] that describes someone. You can also write [FILL] where you want the bot to fill in a word on its own.`)
promptInput.value(`The man works as a <mask> but ...`)
promptInput.addClass("prompt")
p5.createP(promptInput.attribute('label'))
// .position(0,100)
//make for loop to generate
//make a button to make another
//add them to the list of items
fieldsDiv = p5.createDiv()
fieldsDiv.id('fieldsDiv')
// fieldsDiv.position(0,250)
// initial code to make a single field
// blankA = p5.createInput("");
// blankA.position(0, 240);
// blankA.size(300);
// blankA.addClass("blank")
// blankA.parent('#fieldsDiv')
// function to generate a single BLANK form field instead
addField()
// // BUTTONS // //
// let buttonsDiv = p5.createDiv() // container to organize buttons
// buttonsDiv.id('buttonsDiv')
// send prompt to model
let submitButton = p5.createButton("SUBMIT")
// submitButton.position(0,500)
submitButton.size(170)
submitButton.class('submit');
// submitButton.parent('#buttonsDiv')
submitButton.mousePressed(getInputs)
// add more blanks to fill in
let addButton = p5.createButton("more blanks")
addButton.size(170)
// addButton.position(220,500)
// addButton.parent('#buttonsDiv')
addButton.mousePressed(addField)
// TO-DO a model drop down list?
// alt-text description
// p5.describe(`Pink and black text on a white background with form inputs and two buttons. The text describes a p5.js Critical AI Prompt Battle tool that lets you run several AI chat prompts at once and compare their results. Use it to explore what models 'know' about various concepts, communities, and cultures. In the largest form input you can write a prompt to submit. In smaller inputs, you can write variables that will be inserted into that prompt as variations of the prompt when it is run through the model. There is a submit button, a button to add more variations, and when the model is run it adds text at the bottom showing the output results.`)
}
function addField(){
let f = p5.createInput("")
f.class("blank")
f.parent("#fieldsDiv")
blanksArray.push(f)
console.log("made field")
// Cap the number of fields, avoids token limit in prompt
let blanks = document.querySelectorAll(".blank")
if (blanks.length > 7){
console.log(blanks.length)
addButton.style('visibility','hidden')
}
}
// async function getInputs(){
// // Map the list of blanks text values to a new list
// let BLANKSVALUES = blanksArray.map(i => i.value())
// console.log(BLANKSVALUES)
// // Do model stuff in this function instead of in general
// let PROMPT = promptInput.value() // updated check of the prompt field
// // BLANKS = inputValues // get ready to feed array list into model
// let PREPROMPT = `In the sentence I provide, please fill in the [BLANK] with each word in the array ${BLANKSVALUES}, replace any [MASK] with a word of your choice. Here is the SAMPLE SENTENCE: `
// // we pass PROMPT and PREPROMPT to the model function, don't need to pass BLANKSVALUES bc it's passed into the PREPROMPT already here
// // Please return an array of sentences based on the sample sentence to follow. In each sentence,
// // let modelResult = await runModel(PREPROMPT, PROMPT)
// await displayModel(modelResult)
// }
// creating multiple prompt inputs rather than instructing model to do so
async function getInputs(){
// Map the list of blanks text values to a new list
// let BLANKSVALUES = blanksArray.map(i => i.value())
// console.log(BLANKSVALUES)
// Do model stuff in this function instead of in general
let PROMPT = promptInput.value() // updated check of the prompt field
// BLANKS = inputValues // get ready to feed array list into model
// for running MULTIPLE PROMPTS AT ONCE
// let PROMPTS = []
// for (let b in BLANKSVALUES){
// console.log(BLANKSVALUES[b])
// let p = PROMPT.replace('[BLANK]', `${BLANKSVALUES[b]}`)
// console.log(p)
// PROMPTS.push(p)
// }
// console.log(PROMPTS)
// let PREPROMPT = `In the sentence I provide, please fill in the [BLANK] with each word in the array ${BLANKSVALUES}, replace any [MASK] with a word of your choice. Here is the SAMPLE SENTENCE: `
// we pass PROMPT and PREPROMPT to the model function, don't need to pass BLANKSVALUES bc it's passed into the PREPROMPT already here
// Please return an array of sentences based on the sample sentence to follow. In each sentence,
let modelResult = await runModel(PROMPT)
// let modelResult = await runModel(PREPROMPT, PROMPT)
// let modelResult = await runModel(PROMPTS)
await displayModel(modelResult)
// await displayModel(resultsArray[0], resultsArray[1])
}
async function displayModel(m){
m = str(m)
let modelDisplay = p5.createElement("p", "Results:");
await modelDisplay.html(m)
}
});
///// MODEL STUFF
// async function runModel(PROMPT){
// // let MODELNAME = 'distilroberta-base'
// let unmasker = await fillMask(PROMPT)
// console.log(unmasker)
// // let res = unmasker(PROMPT, top_k=5)
// var modelResult = [unmasker[0].sequence, unmasker[1].sequence, unmasker[2].sequence]
// return modelResult
// }
// async function runModel(PREPROMPT, PROMPT){
// // inference API version
// let INPUT = PREPROMPT + PROMPT
// // let MODELNAME = "HuggingFaceH4/zephyr-7b-beta"
// // let MODELNAME = "openai-community/gpt2"
// // let MODELNAME = 'mistral_inference'
// // let MODELNAME = 'Xenova/distilgpt2'
// let MODELNAME = 'bigscience/bloom-560m'
// let out = await textGeneration({
// accessToken: HF_TOKEN,
// model: MODELNAME,
// inputs: INPUT,
// parameters: {
// max_new_tokens: 128
// }
// });
// // let out = await inference.textGeneration(INPUT, {
// // model: MODELNAME,
// // max_new_tokens: 128
// // })
// // let out = await inference.textGeneration(INPUT, 'bigscience/bloom-560m')
// // text-generation-inference
// // Uncaught (in promise) Error: HfApiJson(Deserialize(Error("unknown variant `transformers.js`, expected one of `text-generation-inference`, `transformers`, `allennlp`, `flair`, `espnet`, `asteroid`, `speechbrain`, `timm`, `sentence-transformers`, `spacy`, `sklearn`, `stanza`, `adapter-transformers`, `fasttext`, `fairseq`, `pyannote-audio`, `doctr`, `nemo`, `fastai`, `k2`, `diffusers`, `paddlenlp`, `mindspore`, `open_clip`, `span-marker`, `bertopic`, `peft`, `setfit`", line: 1, column: 397)))
// // let out = await inference.textGeneration({
// // accessToken: HF_TOKEN,
// // model: MODELNAME,
// // messages: [{
// // role: "system",
// // content: PREPROMPT
// // },{
// // role: "user",
// // content: PROMPT
// // }],
// // max_new_tokens: 128
// // });
// console.log(out)
// console.log(out.token.text, out.generated_text)
// // modelResult = await out.messages[0].content
// // var modelResult = await out.choices[0].message.content
// var modelResult = await out[0].generated_text
// console.log(modelResult);
// return modelResult
// }
//inference.fill_mask({
// let out = await pipe(PREPROMPT + PROMPT)
// let out = await pipe(PREPROMPT + PROMPT, {
// max_new_tokens: 250,
// temperature: 0.9,
// // return_full_text: False,
// repetition_penalty: 1.5,
// // no_repeat_ngram_size: 2,
// // num_beams: 2,
// num_return_sequences: 1
// });
// var PROMPT = `The [BLANK] works as a [blank] but wishes for [blank].`
// /// this needs to run on button click, use string variables to blank in the form
// var PROMPT = promptInput.value()
// var blanksArray = ["mother", "father", "sister", "brother"]
// // for num of blanks put in list
//Error: Server Xenova/distilgpt2 does not seem to support chat completion. Error: HfApiJson(Deserialize(Error("unknown variant `transformers.js`, expected one of `text-generation-inference`, `transformers`, `allennlp`, `flair`, `espnet`, `asteroid`, `speechbrain`, `timm`, `sentence-transformers`, `spacy`, `sklearn`, `stanza`, `adapter-transformers`, `fasttext`, `fairseq`, `pyannote-audio`, `doctr`, `nemo`, `fastai`, `k2`, `diffusers`, `paddlenlp`, `mindspore`, `open_clip`, `span-marker`, `bertopic`, `peft`, `setfit`", line: 1, column: 397)))
// async function runModel(PREPROMPT, PROMPT){
// // // pipeline version
// // let MODELNAME = 'mistralai/Mistral-Nemo-Instruct-2407'
// let MODELNAME = "HuggingFaceH4/zephyr-7b-beta"
// // HF_TOKEN
// // 'meta-llama/Meta-Llama-3-70B-Instruct'
// // 'openai-community/gpt2'
// // 'Xenova/gpt-3.5-turbo'
// // , 'Xenova/distilgpt2'
// // 'mistralai/Mistral-7B-Instruct-v0.2'
// // 'HuggingFaceH4/zephyr-7b-beta'
// // pipeline/transformers version
// let pipe = await pipeline('text-generation', {
// model: MODELNAME,
// accessToken: HF_TOKEN
// });
// // seems to work with default model distilgpt2 ugh
// // let out = await pipe(inputText, {
// // max_tokens: 250,
// // return_full_text: false
// // // repetition_penalty: 1.5,
// // // num_return_sequences: 1 //must be 1 for greedy search
// // })
// // let inputText = PREPROMPT + PROMPT
// // let out = await pipe(inputText)
// let out = await pipe({
// messages: [{
// role: "system",
// content: PREPROMPT
// },{
// role: "user",
// content: PROMPT
// }],
// max_new_tokens: 100
// });
// console.log(out)
// var modelResult = await out.choices[0].message.content
// // var modelResult = await out[0].generated_text
// console.log(modelResult)
// return modelResult
// }
// async function runModel(PROMPTS){
async function runModel(PROMPT){
let MODELNAME = "bert-base-uncased"
// let MODELNAME = 'distilroberta-base'
let unmasker = await pipeline('fill-mask', MODELNAME)
let res = await unmasker(PROMPT)
// , top_k=5
console.log(res[0].sequence, res[0].token_str, res[1].sequence, res[1].token_str)
var modelResult = await res
return modelResult
// for (let p in PROMPTS){
// var res = unmasker(p)
// console.log(res)
// var modelResult = res[0].token_str
// console.log(modelResult)
// resultsArray.push(modelResult)
// }
// return resultsArray
}
async function textGenTask(input){
console.log('text-gen task initiated')
const pipe = await pipeline('text-generation')
var out = await pipe(input)
console.log(await out)
console.log('text-gen task completed')
// parsing of output
await out.forEach(o => {
console.log(o)
OUTPUT_LIST.push(o.generated_text)
})
console.log(OUTPUT_LIST)
console.log('text-gen parsing complete')
return await OUTPUT_LIST
// return await out
}
|