File size: 6,485 Bytes
f1f8f5b
03baa48
 
1ee4720
f1f8f5b
03baa48
 
3d91a45
 
1ee4720
 
 
 
 
 
 
 
 
 
 
 
03baa48
 
 
 
 
 
 
 
 
1ee4720
 
03baa48
1ee4720
 
 
f1f8f5b
1ee4720
03baa48
1ee4720
 
 
3d91a45
 
1ee4720
 
 
 
3d91a45
1ee4720
3d91a45
 
1ee4720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d91a45
1ee4720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b404b3
e530b52
 
 
 
 
 
 
ae852b9
e530b52
 
 
 
 
 
 
 
 
 
1ee4720
 
 
 
 
 
26d208b
1ee4720
26d208b
 
e530b52
 
 
 
1ee4720
 
 
 
 
 
 
27b0824
3f82eb5
1ee4720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f8f5b
 
 
 
 
 
1ee4720
 
 
 
 
 
 
 
e530b52
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';
// import { HfInference } from 'https://cdn.jsdelivr.net/npm/@huggingface/[email protected]/+esm';
// const inference = new HfInference();

// import { pipeline } from '@xenova/transformers';

let pipe = await pipeline('text-generation');

// Since we will download the model from the Hugging Face Hub, we can skip the local model check
// env.allowLocalModels = false;

let promptButton, buttonButton, promptInput, maskInputA, maskInputB, maskInputC, modOutput, modelOutput
// const detector = await pipeline('text-generation', 'meta-llama/Meta-Llama-3-8B');

var inputArray = ["Brit", "Israeli", "German", "Palestinian"]

var PREPROMPT = `Return an array of sentences. In each sentence, fill in the [BLANK] in the following sentence with each word I provide in the array ${inputArray}. Replace any [FILL] with an appropriate word of your choice.` 

var PROMPT = `The [BLANK] works as a [FILL] but wishes for [FILL].`

// Chat completion API
// const out = await inference.chatCompletion({
//     model: "mistralai/Mistral-7B-Instruct-v0.2",
//     // model: "google/gemma-2-9b",
//     messages: [{ role: "user", content: PREPROMPT + PROMPT }],
//     max_tokens: 100
//   });

let out = await pipe(PREPROMPT + PROMPT);
console.log(out)

var result = await out.choices[0].message;
// console.log("role: ", result.role, "content: ", result.content);

//sends the text to a global var (not best way cant figure out better)
// window.modelOutput = result.content;
modelOutput = result.content

// console.log('huggingface loaded');
  
  


// Reference the elements that we will need
// const status = document.getElementById('status');
// const fileUpload = document.getElementById('upload');
// const imageContainer = document.getElementById('container');
// const example = document.getElementById('example');

// const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg';

// Create a new object detection pipeline
// status.textContent = 'Loading model...';
// const detector = await pipeline('object-detection', 'Xenova/detr-resnet-50');

// status.textContent = 'Ready';

// example.addEventListener('click', (e) => {
//     e.preventDefault();
//     detect(EXAMPLE_URL);
// });

// fileUpload.addEventListener('change', function (e) {
//     const file = e.target.files[0];
//     if (!file) {
//         return;
//     }

//     const reader = new FileReader();

//     // Set up a callback when the file is loaded
//     reader.onload = e2 => detect(e2.target.result);

//     reader.readAsDataURL(file);
// });


// // Detect objects in the image
// async function detect(img) {
//     imageContainer.innerHTML = '';
//     imageContainer.style.backgroundImage = `url(${img})`;

//     status.textContent = 'Analysing...';
//     const output = await detector(img, {
//         threshold: 0.5,
//         percentage: true,
//     });
//     status.textContent = '';
//     output.forEach(renderBox);
// }

// // Render a bounding box and label on the image
// function renderBox({ box, label }) {
//     const { xmax, xmin, ymax, ymin } = box;

//     // Generate a random color for the box
//     const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0);

//     // Draw the box
//     const boxElement = document.createElement('div');
//     boxElement.className = 'bounding-box';
//     Object.assign(boxElement.style, {
//         borderColor: color,
//         left: 100 * xmin + '%',
//         top: 100 * ymin + '%',
//         width: 100 * (xmax - xmin) + '%',
//         height: 100 * (ymax - ymin) + '%',
//     })

//     // Draw label
//     const labelElement = document.createElement('span');
//     labelElement.textContent = label;
//     labelElement.className = 'bounding-box-label';
//     labelElement.style.backgroundColor = color;

//     boxElement.appendChild(labelElement);
//     imageContainer.appendChild(boxElement);
// }

// function setup(){
//     let canvas = createCanvas(200,200)
//     canvas.position(300, 1000);
//     background(200)
//     textSize(20)
//     textAlign(CENTER,CENTER)
//     console.log('p5 loaded')
    
// }

// function draw(){
//     //
// }


new p5(function(p5){
    p5.setup = function(){
        console.log('p5 loaded')
        p5.noCanvas()
        makeInterface()
        // let canvas = p5.createCanvas(200,200)
        // canvas.position(300, 1000);
        // p5.background(200)
        // p5.textSize(20)
        // p5.textAlign(p5.CENTER,p5.CENTER)
        // let promptButton = p5.createButton("GO").position(0, 340);
        // promptButton.position(0, 340);
        // promptButton.elt.style.fontSize = "15px";
        
    }
    
    p5.draw = function(){
        pass
    }

    window.onload = function(){
        console.log('sketchfile loaded')
    }

    function makeInterface(){
        console.log('got to make interface')
        promptInput = p5.createInput("")
        promptInput.position(0,160)
        promptInput.size(500);
        promptInput.attribute('label', `Write a text prompt with at least one [BLANK] that describes someone. You can also write [FILL] where you want the bot to fill in a word.`)
        promptInput.value(`For example: "The [BLANK] has a job as a ...`)
        promptInput.elt.style.fontSize = "15px";
        p5.createP(promptInput.attribute('label')).position(0,100)
        // p5.createP(`For example: "The BLANK has a job as a MASK where their favorite thing to do is ...`)

        //make for loop to generate
        maskInputA = p5.createInput("");
        maskInputA.position(0, 240);
        maskInputA.size(200);
        maskInputA.elt.style.fontSize = "15px";  

        maskInputB = p5.createInput("");
        maskInputB.position(0, 270);
        maskInputB.size(200);
        maskInputB.elt.style.fontSize = "15px";

        maskInputC = p5.createInput("");
        maskInputC.position(0, 300);
        maskInputC.size(200);
        maskInputC.elt.style.fontSize = "15px";

        modOutput = p5.createElement("p", "Results:");
        modOutput.position(0, 380);
            setTimeout(() => {
                modOutput.html(modelOutput)
        }, 2000);

    }

    function makeInput(i){
        i = p5.createInput("");
        i.position(0, 300); //append to last input and move buttons down
        i.size(200);
        i.elt.style.fontSize = "15px";
      }    
});