cat-breed1 / app.py
sarahai's picture
Create app.py
f92492a verified
from keras.models import load_model # TensorFlow is required for Keras to work
from PIL import Image, ImageOps # Install pillow instead of PIL
import numpy as np
import streamlit as st
# Disable scientific notation for clarity
np.set_printoptions(suppress=True)
# Load the model
model = load_model("keras_model.h5", compile=False)
# Load the labels
class_names = open("labels.txt", "r").readlines()
st.title("Cat Breed Identifier")
st.header("Upload an Image to classify")
uploaded_file = st.file_uploader("Choose the image...", type=['jpg','jpeg', 'png'])
if uploaded_file is not None:
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# Replace this with the path to your image
image = Image.open(uploaded_file).convert("RGB")
st.image(image, caption="Uploaded Image...",use_column_width=True)
# resizing the image to be at least 224x224 and then cropping from the center
size = (224, 224)
image = ImageOps.fit(image, size, Image.Resampling.LANCZOS)
# turn the image into a numpy array
image_array = np.asarray(image)
# Normalize the image
normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
# Load the image into the array
data[0] = normalized_image_array
# Predicts the model
prediction = model.predict(data)
index = np.argmax(prediction)
class_name = class_names[index]
confidence_score = prediction[0][index]
# Print prediction and confidence score
st.write(f"Class: {class_name[2:].strip()}")
st.write(f"Confidence Score: {confidence_score}")