Spaces:
Sleeping
Sleeping
from keras.models import load_model # TensorFlow is required for Keras to work | |
from PIL import Image, ImageOps # Install pillow instead of PIL | |
import numpy as np | |
import streamlit as st | |
# Disable scientific notation for clarity | |
np.set_printoptions(suppress=True) | |
# Load the model | |
model = load_model("keras_model.h5", compile=False) | |
# Load the labels | |
class_names = open("labels.txt", "r").readlines() | |
st.title("Cat Breed Identifier") | |
st.header("Upload an Image to classify") | |
uploaded_file = st.file_uploader("Choose the image...", type=['jpg','jpeg', 'png']) | |
if uploaded_file is not None: | |
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) | |
# Replace this with the path to your image | |
image = Image.open(uploaded_file).convert("RGB") | |
st.image(image, caption="Uploaded Image...",use_column_width=True) | |
# resizing the image to be at least 224x224 and then cropping from the center | |
size = (224, 224) | |
image = ImageOps.fit(image, size, Image.Resampling.LANCZOS) | |
# turn the image into a numpy array | |
image_array = np.asarray(image) | |
# Normalize the image | |
normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1 | |
# Load the image into the array | |
data[0] = normalized_image_array | |
# Predicts the model | |
prediction = model.predict(data) | |
index = np.argmax(prediction) | |
class_name = class_names[index] | |
confidence_score = prediction[0][index] | |
# Print prediction and confidence score | |
st.write(f"Class: {class_name[2:].strip()}") | |
st.write(f"Confidence Score: {confidence_score}") | |