sankar12345 commited on
Commit
84e3b2a
1 Parent(s): 80cbdea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -13
app.py CHANGED
@@ -1,4 +1,3 @@
1
- import os
2
  import streamlit as st
3
  from dotenv import load_dotenv
4
  from PyPDF2 import PdfReader
@@ -33,14 +32,14 @@ def get_text_chunks(text):
33
 
34
  def get_vectorstore(text_chunks):
35
  # embeddings = OpenAIEmbeddings()
36
- embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl", token=os.getenv("HUGGING_FACE_TOKEN"))
37
  vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
38
  return vectorstore
39
 
40
 
41
  def get_conversation_chain(vectorstore):
42
  # llm = ChatOpenAI()
43
- llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}, token=os.getenv("HUGGING_FACE_TOKEN"))
44
 
45
  memory = ConversationBufferMemory(
46
  memory_key='chat_history', return_messages=True)
@@ -53,13 +52,7 @@ def get_conversation_chain(vectorstore):
53
 
54
 
55
  def handle_userinput(user_question):
56
- conversation = st.session_state.conversation
57
- if conversation is None:
58
- st.error("Conversation not initialized. Please upload PDFs and process them.")
59
- return
60
-
61
- print("Conversation:", conversation) # Add this line for debugging
62
- response = conversation({'question': user_question})
63
  st.session_state.chat_history = response['chat_history']
64
 
65
  for i, message in enumerate(st.session_state.chat_history):
@@ -71,8 +64,6 @@ def handle_userinput(user_question):
71
  "{{MSG}}", message.content), unsafe_allow_html=True)
72
 
73
 
74
-
75
-
76
  def main():
77
  load_dotenv()
78
  st.set_page_config(page_title="Chat with multiple PDFs",
@@ -110,4 +101,4 @@ def main():
110
 
111
 
112
  if __name__ == '__main__':
113
- main()
 
 
1
  import streamlit as st
2
  from dotenv import load_dotenv
3
  from PyPDF2 import PdfReader
 
32
 
33
  def get_vectorstore(text_chunks):
34
  # embeddings = OpenAIEmbeddings()
35
+ embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
36
  vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
37
  return vectorstore
38
 
39
 
40
  def get_conversation_chain(vectorstore):
41
  # llm = ChatOpenAI()
42
+ llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
43
 
44
  memory = ConversationBufferMemory(
45
  memory_key='chat_history', return_messages=True)
 
52
 
53
 
54
  def handle_userinput(user_question):
55
+ response = st.session_state.conversation({'question': user_question})
 
 
 
 
 
 
56
  st.session_state.chat_history = response['chat_history']
57
 
58
  for i, message in enumerate(st.session_state.chat_history):
 
64
  "{{MSG}}", message.content), unsafe_allow_html=True)
65
 
66
 
 
 
67
  def main():
68
  load_dotenv()
69
  st.set_page_config(page_title="Chat with multiple PDFs",
 
101
 
102
 
103
  if __name__ == '__main__':
104
+ main()