Spaces:
Sleeping
Sleeping
File size: 10,589 Bytes
b0b9ff1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from dataclasses import asdict, dataclass
from pathlib import Path
from typing import Any, Dict, List, Optional, Type, TypeVar, Union
from huggingface_hub import ModelHubMixin, hf_hub_download
# Generic variable that is either ModelHubMixin or a subclass thereof
T = TypeVar("T", bound="ModelHubMixin")
TEMPLATE_FILENAME = "dialogue_template.json"
IGNORE_INDEX = -100
@dataclass
class DialogueTemplate(ModelHubMixin):
"""Converts all turns of a dialogue between a user and assistant to a standardized format.
Adapted from OpenAI's ChatML (https://github.com/openai/openai-python/blob/main/chatml.md) and Vicuna (https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py)
"""
system: str
messages: List[Dict[str, str]] = None
system_token: str = "<|system|>"
user_token: str = "<|user|>"
assistant_token: str = "<|assistant|>"
end_token: str = "<|end|>"
def get_training_prompt(self) -> str:
prompt = self.system_token + "\n" + self.system + self.end_token + "\n"
if self.messages is None:
raise ValueError("Dialogue template must have at least one message.")
for message in self.messages:
if message["role"] == "user":
prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n"
else:
prompt += self.assistant_token + "\n" + message["content"] + self.end_token + "\n"
return prompt
def get_inference_prompt(self) -> str:
prompt = self.system_token + "\n" + self.system + self.end_token + "\n"
if self.messages is None:
raise ValueError("Dialogue template must have at least one message.")
for message in self.messages:
if message["role"] == "user":
prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n"
else:
prompt += self.assistant_token + "\n" + message["content"] + self.end_token + "\n"
prompt += self.assistant_token
return prompt
def get_dialogue(self):
"""Helper function to format the messages as an easy-to-read dialogue."""
prompt = ""
if self.messages is None:
raise ValueError("Dialogue template must have at least one message.")
for message in self.messages:
if message["role"] == "user":
prompt += "\n\nHuman: " + message["content"]
else:
prompt += "\n\nAssistant: " + message["content"]
return prompt
def get_special_tokens(self) -> List[str]:
return [self.system_token, self.user_token, self.assistant_token, self.end_token]
def copy(self):
return DialogueTemplate(
system=self.system,
messages=self.messages,
system_token=self.system_token,
user_token=self.user_token,
assistant_token=self.assistant_token,
end_token=self.end_token,
)
def to_dict(self) -> Dict[str, Any]:
return {k: v for k, v in asdict(self).items()}
@classmethod
def from_dict(cls, data):
return DialogueTemplate(
system=data["system"] if "system" in data else "",
messages=data["messages"] if "messages" in data else None,
system_token=data["system_token"] if "system_token" in data else "<|system|>",
user_token=data["user_token"] if "user_token" in data else "<|user|>",
assistant_token=data["assistant_token"] if "assistant_token" in data else "<|assistant|>",
end_token=data["end_token"] if "end_token" in data else "<|end|>",
)
def _save_pretrained(self, save_directory: Union[str, Path]) -> None:
save_directory = Path(save_directory)
save_directory.mkdir(exist_ok=True)
with open(save_directory / "dialogue_template.json", "w") as f:
json.dump(self.to_dict(), f, indent=2)
@classmethod
def _from_pretrained(
cls: Type[T],
*,
model_id: str,
revision: Optional[str],
cache_dir: Optional[Union[str, Path]],
force_download: bool,
proxies: Optional[Dict],
resume_download: bool,
local_files_only: bool,
token: Optional[Union[str, bool]],
**model_kwargs,
) -> T:
"""Loads the dialogue template from a local directory or the Huggingface Hub.
Args:
model_id (`str`):
ID of the model to load from the Huggingface Hub (e.g. `bigscience/bloom`).
revision (`str`, *optional*):
Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. Defaults to the
latest commit on `main` branch.
force_download (`bool`, *optional*, defaults to `False`):
Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding
the existing cache.
resume_download (`bool`, *optional*, defaults to `False`):
Whether to delete incompletely received files. Will attempt to resume the download if such a file exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint (e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`).
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. By default, it will use the token
cached when running `huggingface-cli login`.
cache_dir (`str`, `Path`, *optional*):
Path to the folder where cached files are stored.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, avoid downloading the file and return the path to the local cached file if it exists.
model_kwargs:
Additional keyword arguments passed along to the [`~ModelHubMixin._from_pretrained`] method.
"""
if os.path.isdir(model_id): # Can either be a local directory
print("Loading dialogue template from local directory")
template_file = os.path.join(model_id, TEMPLATE_FILENAME)
else: # Or a template on the Hub
template_file = hf_hub_download( # Download from the hub, passing same input args
repo_id=model_id,
filename=TEMPLATE_FILENAME,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
# Load template
with open(template_file, "r") as f:
data = json.load(f)
return cls.from_dict(data=data)
# A shortened version of the system message in Anthropic's HHH prompt: https://gist.github.com/jareddk/2509330f8ef3d787fc5aaac67aab5f11#file-hhh_prompt-txt
default_template = DialogueTemplate(
system="Below is a dialogue between a human user and an AI assistant. The assistant is happy to help with almost anything, and will do its best to understand exactly what is needed.",
)
# OpenAI and OpenAssistant train on few to no system messages.
# TODO: consider defining this as the `default` template
no_system_template = DialogueTemplate(
system="",
)
alpaca_template = DialogueTemplate(
system="Below is an instruction that describes a task. Write a response that appropriately completes the request.",
user_token="### Instruction:",
assistant_token="### Response:",
)
SUPPORTED_DIALOGUE_TEMPLATES = {
"default": default_template,
"no_system": no_system_template,
"alpaca": alpaca_template,
}
def get_dialogue_template(template: str) -> DialogueTemplate:
if template not in SUPPORTED_DIALOGUE_TEMPLATES.keys():
raise ValueError(f"Template {template} is not supported!")
return SUPPORTED_DIALOGUE_TEMPLATES[template].copy()
def prepare_dialogue(example, dialogue_template, is_train=True):
"""Format example to single- or multi-turn dialogue."""
# TODO: make this simpler by just ensuring every dataset has a messages column
if "messages" in example.keys() and example["messages"] is not None:
dialogue_template.messages = example["messages"]
elif all(k in example.keys() for k in ("prompt", "completion")):
# Construct single-turn dialogue from prompt and completion
dialogue_template.messages = [
{"role": "user", "content": example["prompt"]},
{"role": "assistant", "content": example["completion"]},
]
elif "prompt" in example.keys():
# Construct single-turn dialogue from prompt (inference only)
dialogue_template.messages = [
{"role": "user", "content": example["prompt"]},
]
else:
raise ValueError(
f"Could not format example as dialogue! Require either `messages` or `[prompt, completion]` or `[prompt]` keys but found {list(example.keys())}"
)
if is_train:
example["text"] = dialogue_template.get_training_prompt()
else:
example["text"] = dialogue_template.get_inference_prompt()
return example
def mask_user_labels(tokenizer, dialogue_template, labels):
"""Masks the user turns of a dialogue from the loss"""
user_token_id = tokenizer.convert_tokens_to_ids(dialogue_template.user_token)
assistant_token_id = tokenizer.convert_tokens_to_ids(dialogue_template.assistant_token)
for idx, label_id in enumerate(labels):
if label_id == user_token_id:
current_idx = idx
while labels[current_idx] != assistant_token_id and current_idx < len(labels):
labels[current_idx] = IGNORE_INDEX
current_idx += 1
|