Spaces:
Sleeping
Sleeping
File size: 7,571 Bytes
6cc068f ea1e50b 6cc068f ea1e50b 6cc068f ea1e50b 6cc068f ea1e50b 9dc7ca8 ea1e50b 6cc068f ea1e50b 6cc068f 1264943 ea1e50b 1264943 ea1e50b 1264943 ea1e50b 1264943 ea1e50b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import streamlit as st
from dotenv import load_dotenv
import os
import traceback
# PDF and NLP Libraries
import PyPDF2
from langchain.text_splitter import RecursiveCharacterTextSplitter
from sentence_transformers import SentenceTransformer, util
# Embedding and Vector Store
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
# LLM and Conversational Chain
from langchain_groq import ChatGroq
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.prompts import PromptTemplate
# Custom Templates
from htmlTemplate import css, bot_template, user_template
# Load environment variables
os.environ["GROQ_API_KEY"]= os.getenv('GROQ_API_KEY')
# LLM Template for focused responses
llmtemplate = """You're an AI information specialist with a strong emphasis on extracting accurate information from markdown documents. Your expertise involves summarizing data succinctly while adhering to strict guidelines about neutrality and clarity.
Your task is to answer a specific question based on a provided markdown document. Here is the question you need to address:
{question}
Keep in mind the following instructions:
- Your response should be direct and factual, limited to 50 words and 2-3 sentences.
- Avoid using introductory phrases like "yes" or "no."
- Maintain an ethical and unbiased tone, steering clear of harmful or offensive content.
- If the document lacks relevant information, respond with "I cannot provide an answer based on the provided document."
- Do not fabricate information, include questions, or use confirmatory phrases.
- Remember not to prompt for additional information or ask any questions.
Ensure your response is strictly based on the content of the markdown document.
"""
def prepare_docs(pdf_docs):
"""Extract text from uploaded PDF documents"""
docs = []
metadata = []
content = []
for pdf in pdf_docs:
pdf_reader = PyPDF2.PdfReader(pdf)
for index, text in enumerate(pdf_reader.pages):
doc_page = {
'title': f"{pdf.name} page {index + 1}",
'content': pdf_reader.pages[index].extract_text()
}
docs.append(doc_page)
for doc in docs:
content.append(doc["content"])
metadata.append({"title": doc["title"]})
return content, metadata
def get_text_chunks(content, metadata):
"""Split documents into manageable chunks"""
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=1024,
chunk_overlap=256,
)
split_docs = text_splitter.create_documents(content, metadatas=metadata)
print(f"Split documents into {len(split_docs)} passages")
return split_docs
def ingest_into_vectordb(split_docs):
"""Create vector embeddings and store in FAISS"""
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device':'cpu'}
)
db = FAISS.from_documents(split_docs, embeddings)
DB_FAISS_PATH = 'vectorstore/db_faiss'
db.save_local(DB_FAISS_PATH)
return db
def get_conversation_chain(vectordb):
"""Create conversational retrieval chain"""
llm = ChatGroq(model="llama3-70b-8192", temperature=0.25)
retriever = vectordb.as_retriever()
memory = ConversationBufferMemory(
memory_key='chat_history',
return_messages=True,
output_key='answer'
)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory,
return_source_documents=True
)
print("Conversational Chain created for the LLM using the vector store")
return conversation_chain
def validate_answer_against_sources(response_answer, source_documents):
"""Validate AI's response against source documents"""
model = SentenceTransformer('all-MiniLM-L6-v2')
similarity_threshold = 0.5
source_texts = [doc.page_content for doc in source_documents]
answer_embedding = model.encode(response_answer, convert_to_tensor=True)
source_embeddings = model.encode(source_texts, convert_to_tensor=True)
cosine_scores = util.pytorch_cos_sim(answer_embedding, source_embeddings)
return any(score.item() > similarity_threshold for score in cosine_scores[0])
def handle_userinput(user_question):
"""Process user input and display chat history"""
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
"""Main Streamlit application"""
load_dotenv()
st.set_page_config(
page_title="PDF Insights AI",
page_icon=":books:",
layout="wide"
)
st.write(css, unsafe_allow_html=True)
# Welcome section
st.title("π PDF Insights AI")
st.markdown("""
### Unlock the Knowledge in Your PDFs
- π€ AI-powered document analysis
- π¬ Ask questions about your uploaded documents
- π Support for multiple PDF files
""")
# Initialize session state
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
# File upload section
with st.sidebar:
st.header("π€ Upload Documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here",
type=['pdf'],
accept_multiple_files=True,
help="Upload PDF files to analyze. Max file size: 200MB"
)
# File validation
if pdf_docs:
for doc in pdf_docs:
if doc.size > 200 * 1024 * 1024: # 200 MB
st.error(f"File {doc.name} is too large. Maximum file size is 200MB.")
pdf_docs.remove(doc)
if st.button("Process Documents", type="primary"):
if not pdf_docs:
st.warning("Please upload at least one PDF file.")
else:
with st.spinner("Processing your documents..."):
try:
# Process documents
content, metadata = prepare_docs(pdf_docs)
split_docs = get_text_chunks(content, metadata)
vectorstore = ingest_into_vectordb(split_docs)
st.session_state.conversation = get_conversation_chain(vectorstore)
st.success("Documents processed successfully! You can now ask questions.")
except Exception as e:
st.error(f"An error occurred while processing documents: {str(e)}")
# Question input section
user_question = st.text_input(
"π Ask a question about your documents",
placeholder="What insights can you provide from these documents?"
)
if user_question:
if st.session_state.conversation is None:
st.warning("Please upload and process documents first.")
else:
handle_userinput(user_question)
if __name__ == '__main__':
main() |