Spaces:
Runtime error
Runtime error
commit with 2 UI
Browse files
app.py
CHANGED
@@ -1,19 +1,192 @@
|
|
1 |
import torch
|
2 |
-
import
|
3 |
import gradio as gr
|
4 |
-
import
|
5 |
import openai
|
|
|
|
|
6 |
import base64
|
7 |
-
import numpy as np
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
API_KEY = os.getenv('OPEN_AI_API_KEY')
|
10 |
-
from TTS.api import TTS
|
11 |
-
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to('cuda')
|
12 |
|
13 |
DESCRIPTION = '''
|
14 |
<div>
|
15 |
-
<h1 style="text-align: center;">
|
16 |
-
<p style="text-align: center;">This
|
|
|
17 |
</div>
|
18 |
'''
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from diffusers import DiffusionPipeline
|
3 |
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
import openai
|
6 |
+
import os
|
7 |
+
import spaces
|
8 |
import base64
|
|
|
9 |
|
10 |
+
# Setup logging
|
11 |
+
# logging.basicConfig(level=logging.DEBUG)
|
12 |
+
# logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
# Retrieve the OpenAI API key from the environment
|
15 |
API_KEY = os.getenv('OPEN_AI_API_KEY')
|
|
|
|
|
16 |
|
17 |
DESCRIPTION = '''
|
18 |
<div>
|
19 |
+
<h1 style="text-align: center;">Book-Reader</h1>
|
20 |
+
<p style="text-align: center;">This contains a Stable Diffusor from <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0"><b>stabilityai/stable-diffusion-xl-base-1.0</b></a></p>
|
21 |
+
<p style="text-align: center;">For Instructions on how to use the models <a href="https://huggingface.co/spaces/sandz7/chimera/blob/main/README.md"><b>view this</b></a></p>
|
22 |
</div>
|
23 |
'''
|
24 |
|
25 |
+
# load both base and refiner
|
26 |
+
base = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda:0")
|
27 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0",
|
28 |
+
text_encoder_2=base.text_encoder_2,
|
29 |
+
vae=base.vae,
|
30 |
+
torch_dtype=torch.float16,
|
31 |
+
use_safetensor=True,
|
32 |
+
variant="fp16").to("cuda:0")
|
33 |
+
|
34 |
+
chat_mode = {}
|
35 |
+
|
36 |
+
def encode_image(image_path):
|
37 |
+
chat_mode["the_mode"] = "diffusing"
|
38 |
+
with open(image_path, "rb") as image_file:
|
39 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
40 |
+
|
41 |
+
def generation(message, history):
|
42 |
+
"""
|
43 |
+
Generates a response based on the input message and optionally an image.
|
44 |
+
"""
|
45 |
+
global chat_mode
|
46 |
+
image_path = None
|
47 |
+
if "files" in message and message["files"]:
|
48 |
+
if type(message["files"][-1]) == dict:
|
49 |
+
image_path = message["files"][-1]["path"]
|
50 |
+
else:
|
51 |
+
image_path = message["files"][-1]
|
52 |
+
else:
|
53 |
+
for hist in history:
|
54 |
+
if type(hist[0]) == tuple:
|
55 |
+
image_path = hist[0][0]
|
56 |
+
|
57 |
+
input_prompt = message if isinstance(message, str) else message.get("text", "")
|
58 |
+
|
59 |
+
if image_path is None:
|
60 |
+
chat_mode["mode"] = "text"
|
61 |
+
client = openai.OpenAI(api_key=API_KEY)
|
62 |
+
stream = client.chat.completions.create(
|
63 |
+
model="gpt-3.5-turbo",
|
64 |
+
messages=[{"role": "system", "content": "You are a helpful assistant called 'chimera'."},
|
65 |
+
{"role": "user", "content": input_prompt}],
|
66 |
+
stream=True,
|
67 |
+
)
|
68 |
+
return stream
|
69 |
+
else:
|
70 |
+
chat_mode["mode"] = "image"
|
71 |
+
base64_image = encode_image(image_path=image_path)
|
72 |
+
client = openai.OpenAI(api_key=API_KEY)
|
73 |
+
stream = client.chat.completions.create(
|
74 |
+
model="gpt-4o",
|
75 |
+
messages=[{"role": "system", "content": "You are a helpful assistant called 'chimera'."},
|
76 |
+
{"role": "user", "content": [
|
77 |
+
{"type": "text", "text": input_prompt},
|
78 |
+
{"type": "image_url", "image_url": {
|
79 |
+
"url": f"data:image/jpeg;base64,{base64_image}"
|
80 |
+
}}
|
81 |
+
]}],
|
82 |
+
stream=True,
|
83 |
+
)
|
84 |
+
return stream
|
85 |
+
|
86 |
+
# function to take input and generate text tokena
|
87 |
+
@spaces.GPU(duration=120)
|
88 |
+
def diffusing(prompt: str,
|
89 |
+
n_steps: int,
|
90 |
+
denoising: float):
|
91 |
+
"""
|
92 |
+
Takes input, passes it into the pipeline,
|
93 |
+
get the top 5 scores, and ouput those scores into images
|
94 |
+
"""
|
95 |
+
|
96 |
+
# Generate image based on text
|
97 |
+
image_base = base(
|
98 |
+
prompt=prompt,
|
99 |
+
num_inference_steps=n_steps,
|
100 |
+
denoising_end=denoising,
|
101 |
+
output_type="latent"
|
102 |
+
).images
|
103 |
+
|
104 |
+
image = refiner(
|
105 |
+
prompt=prompt,
|
106 |
+
num_inference_steps=n_steps,
|
107 |
+
denoising_start=denoising,
|
108 |
+
image=image_base
|
109 |
+
).images[0]
|
110 |
+
|
111 |
+
return image
|
112 |
+
|
113 |
+
def check_cuda_availability():
|
114 |
+
if torch.cuda.is_available():
|
115 |
+
return f"GPU: {torch.cuda.get_device_name(0)}"
|
116 |
+
else:
|
117 |
+
return "No CUDA device found."
|
118 |
+
|
119 |
+
# Image created from diffusing
|
120 |
+
image_created = {}
|
121 |
+
|
122 |
+
@spaces.GPU(duration=120)
|
123 |
+
def bot_comms(message, history):
|
124 |
+
"""
|
125 |
+
Handles communication between Gradio and the models.
|
126 |
+
"""
|
127 |
+
|
128 |
+
# ensures message is a dictionary
|
129 |
+
if not isinstance(message, dict):
|
130 |
+
message = {"text": message}
|
131 |
+
|
132 |
+
if message["text"] == "check cuda":
|
133 |
+
yield check_cuda_availability()
|
134 |
+
return
|
135 |
+
|
136 |
+
buffer = ""
|
137 |
+
gpt_outputs = []
|
138 |
+
stream = generation(message, history)
|
139 |
+
|
140 |
+
for chunk in stream:
|
141 |
+
if chunk.choices[0].delta.content is not None:
|
142 |
+
text = chunk.choices[0].delta.content
|
143 |
+
if text:
|
144 |
+
gpt_outputs.append(text)
|
145 |
+
buffer += text
|
146 |
+
yield "".join(gpt_outputs)
|
147 |
+
|
148 |
+
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["images"], placeholder="Enter your question or upload an image.", show_label=False)
|
149 |
+
|
150 |
+
with gr.Blocks(fill_height=True) as demo:
|
151 |
+
with gr.Row():
|
152 |
+
# Diffusing
|
153 |
+
with gr.Column():
|
154 |
+
gr.Markdown(DESCRIPTION)
|
155 |
+
image_prompt = gr.Textbox(label="Image Prompt")
|
156 |
+
output_image = gr.Image(label="Generated Image")
|
157 |
+
generate_image_button = gr.Button("Generate Image")
|
158 |
+
# generate_image_button.click(fn=diffusing, inputs=image_prompt, outputs=output_image)
|
159 |
+
with gr.Accordion(label="⚙️ Parameters", open=False):
|
160 |
+
steps_slider = gr.Slider(
|
161 |
+
minimum=20,
|
162 |
+
maximum=100,
|
163 |
+
step=1,
|
164 |
+
value=40,
|
165 |
+
label="Number of Inference Steps"
|
166 |
+
)
|
167 |
+
denoising_slider = gr.Slider(
|
168 |
+
minimum=0.0,
|
169 |
+
maximum=1.0,
|
170 |
+
step=0.1,
|
171 |
+
value=0.8,
|
172 |
+
label="High Noise Fraction"
|
173 |
+
)
|
174 |
+
generate_image_button.click(
|
175 |
+
fn=diffusing,
|
176 |
+
inputs=[image_prompt, steps_slider, denoising_slider],
|
177 |
+
outputs=output_image
|
178 |
+
)
|
179 |
+
with gr.Column():
|
180 |
+
# GPT-3.5
|
181 |
+
gr.Markdown('''
|
182 |
+
<div>
|
183 |
+
<h1 style="text-align: center;">Smart Reader</h1>
|
184 |
+
<p style="text-align: center;">This contains a Generative LLM from <a href="https://openai.com/"><b>Open AI</b></a> called GPT-3.5-Turbo and Vision.</p>
|
185 |
+
<p style="text-align: center;">For Instructions on how to use the models <a href="https://huggingface.co/spaces/sandz7/chimera/blob/main/README.md"><b>view this</b></a></p>
|
186 |
+
</div>
|
187 |
+
''')
|
188 |
+
chat = gr.ChatInterface(fn=bot_comms,
|
189 |
+
multimodal=True,
|
190 |
+
textbox=chat_input)
|
191 |
+
|
192 |
+
demo.launch()
|
steps.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
1 |
+
It passed as a string to the API regardless of sending a message as an image to be encoded, needs to be sent to API as str to understand
|
2 |
+
|
3 |
+
> Use Openai Vision instead for the content in message being misinterpretated
|