sandz7 commited on
Commit
ba630ab
Β·
1 Parent(s): c4de996

removed logger

Browse files
Files changed (1) hide show
  1. app.py +17 -63
app.py CHANGED
@@ -1,19 +1,15 @@
1
  import torch
2
- import logging
3
  from diffusers import DiffusionPipeline
4
  import gradio as gr
5
  import numpy as np
6
- # from PIL import Image, ImageDraw
7
- import threading
8
  import openai
9
  import os
10
  import spaces
11
  import base64
12
- import traceback
13
 
14
  # Setup logging
15
- logging.basicConfig(level=logging.DEBUG)
16
- logger = logging.getLogger(__name__)
17
 
18
  # Retrieve the OpenAI API key from the environment
19
  API_KEY = os.getenv('OPEN_AI_API_KEYS')
@@ -25,12 +21,6 @@ DESCRIPTION = '''
25
  <p style="text-align: center;">For Instructions on how to use the models <a href="https://huggingface.co/spaces/sandz7/chimera/blob/main/README.md"><b>view this</b></a></p>
26
  </div>
27
  '''
28
- # DESCRIPTION = '''
29
- # <div>
30
- # <h1 style="text-align: center;">Chimera Image Generation</h1>
31
- # <p>This contains a Stable Diffusor from <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0"><b>stabilityai/stable-diffusion-xl-base-1.0</b></a> and a Multimodal from <a href="https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers"><b>xtuner/llava-llama-3-8b-v1_1-transformers</b></a></p>
32
- # </div>
33
- # '''
34
 
35
  # load both base and refiner
36
  base = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda:0")
@@ -42,10 +32,6 @@ refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-ref
42
  variant="fp16").to("cuda:0")
43
 
44
  chat_mode = {}
45
- # class ChatMode:
46
- # def __init__(self):
47
- # self.modes = {}
48
- # self.current_mode = None
49
 
50
  def encode_image(image_path):
51
  chat_mode["the_mode"] = "diffusing"
@@ -72,7 +58,6 @@ def generation(message, history):
72
 
73
  if image_path is None:
74
  chat_mode["mode"] = "text"
75
- # input_prompt = message if isinstance(message, str) else message.get("text", "")
76
  client = openai.OpenAI(api_key=API_KEY)
77
  stream = client.chat.completions.create(
78
  model="gpt-3.5-turbo",
@@ -83,7 +68,6 @@ def generation(message, history):
83
  return stream
84
  else:
85
  chat_mode["mode"] = "image"
86
- # input_prompt = message if isinstance(message, str) else message.get("text", "")
87
  base64_image = encode_image(image_path=image_path)
88
  client = openai.OpenAI(api_key=API_KEY)
89
  stream = client.chat.completions.create(
@@ -110,50 +94,21 @@ def diffusing(prompt: str,
110
  """
111
 
112
  # Generate image based on text
113
- try:
114
- logger.debug(f"Running diffusing with prompt: {prompt}, n_steps: {n_steps}, denoising: {denoising}")
115
-
116
- # Generate image based on text
117
- logger.debug("Calling base() function.")
118
- image_base = base(
119
- prompt=prompt,
120
- num_inference_steps=n_steps,
121
- denoising_end=denoising,
122
- output_type="latent"
123
- ).images
124
-
125
- logger.debug("Base image generated successfully. Proceeding to refiner.")
126
-
127
- logger.debug("Calling refiner() function.")
128
- image = refiner(
129
- prompt=prompt,
130
- num_inference_steps=n_steps,
131
- denoising_start=denoising,
132
- image=image_base
133
- ).images[0]
134
-
135
- logger.debug("Refined image generated successfully.")
136
-
137
- return image
138
-
139
- except Exception as e:
140
- logger.error(f"Error in diffusing: {str(e)}")
141
- logger.error(traceback.format_exc())
142
- raise
143
- # image_base = base(
144
- # prompt=prompt,
145
- # num_inference_steps=n_steps,
146
- # denoising_end=denoising,
147
- # output_type="latent"
148
- # ).images
149
- # image = refiner(
150
- # prompt=prompt,
151
- # num_inference_steps=n_steps,
152
- # denoising_start=denoising,
153
- # image=image_base
154
- # ).images[0]
155
-
156
- # return image
157
 
158
  def check_cuda_availability():
159
  if torch.cuda.is_available():
@@ -175,7 +130,6 @@ def bot_comms(message, history):
175
  message = {"text": message}
176
 
177
  if message["text"] == "check cuda":
178
- logger.debug("Checking CUDA availability.")
179
  yield check_cuda_availability()
180
  return
181
 
 
1
  import torch
 
2
  from diffusers import DiffusionPipeline
3
  import gradio as gr
4
  import numpy as np
 
 
5
  import openai
6
  import os
7
  import spaces
8
  import base64
 
9
 
10
  # Setup logging
11
+ # logging.basicConfig(level=logging.DEBUG)
12
+ # logger = logging.getLogger(__name__)
13
 
14
  # Retrieve the OpenAI API key from the environment
15
  API_KEY = os.getenv('OPEN_AI_API_KEYS')
 
21
  <p style="text-align: center;">For Instructions on how to use the models <a href="https://huggingface.co/spaces/sandz7/chimera/blob/main/README.md"><b>view this</b></a></p>
22
  </div>
23
  '''
 
 
 
 
 
 
24
 
25
  # load both base and refiner
26
  base = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda:0")
 
32
  variant="fp16").to("cuda:0")
33
 
34
  chat_mode = {}
 
 
 
 
35
 
36
  def encode_image(image_path):
37
  chat_mode["the_mode"] = "diffusing"
 
58
 
59
  if image_path is None:
60
  chat_mode["mode"] = "text"
 
61
  client = openai.OpenAI(api_key=API_KEY)
62
  stream = client.chat.completions.create(
63
  model="gpt-3.5-turbo",
 
68
  return stream
69
  else:
70
  chat_mode["mode"] = "image"
 
71
  base64_image = encode_image(image_path=image_path)
72
  client = openai.OpenAI(api_key=API_KEY)
73
  stream = client.chat.completions.create(
 
94
  """
95
 
96
  # Generate image based on text
97
+ image_base = base(
98
+ prompt=prompt,
99
+ num_inference_steps=n_steps,
100
+ denoising_end=denoising,
101
+ output_type="latent"
102
+ ).images
103
+
104
+ image = refiner(
105
+ prompt=prompt,
106
+ num_inference_steps=n_steps,
107
+ denoising_start=denoising,
108
+ image=image_base
109
+ ).images[0]
110
+
111
+ return image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
 
113
  def check_cuda_availability():
114
  if torch.cuda.is_available():
 
130
  message = {"text": message}
131
 
132
  if message["text"] == "check cuda":
 
133
  yield check_cuda_availability()
134
  return
135