File size: 11,210 Bytes
7f412e3 be51b34 7f412e3 81837b1 7f412e3 3f8d160 fc1b391 18b3737 fc1b391 c8fdeaf 3f8d160 fc1b391 7f412e3 a391a20 784fb3b 7f412e3 9524220 a423985 3f8d160 dea0287 7f412e3 dea0287 3f8d160 dea0287 3f8d160 dea0287 7f412e3 99258b1 7f412e3 99258b1 6eabca8 99258b1 e134cad 7f412e3 3c218b1 9b33095 3c218b1 7ea7d03 a4cb095 3c218b1 a41297a 3c218b1 fc1b391 3f8d160 dea0287 3a1fb15 dea0287 a338474 373e5e4 3f8d160 a338474 3f8d160 a338474 06abb8b fc1b391 705f145 a338474 fc1b391 705f145 06abb8b fc1b391 a338474 fc1b391 81837b1 fc1b391 3f8d160 fc1b391 6e54d32 81837b1 0d883c8 81837b1 3f8d160 3a1fb15 fc1b391 d5fb537 98beb1c 0d883c8 3f8d160 6e54d32 3f8d160 0ffeed6 3f8d160 6e54d32 3f8d160 0ffeed6 3f8d160 0059c8b 0ffeed6 3f8d160 a338474 c266f85 a338474 c266f85 a338474 e4e1a0b a391a20 784fb3b a391a20 0bae6f9 dea0287 e4e1a0b 705f145 e4e1a0b 7f412e3 e4e1a0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import torch
import logging
from transformers import TextIteratorStreamer, AutoProcessor, LlavaForConditionalGeneration
from diffusers import DiffusionPipeline
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import threading
import openai
import os
import spaces
# Setup logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Retrieve the OpenAI API key from the environment
API_KEY = os.getenv('OPEN_AI_API_KEYS')
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Chimera Image Generation</h1>
<p style="text-align: center;">This contains a Stable Diffusor from <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0"><b>stabilityai/stable-diffusion-xl-base-1.0</b></a></p>
</div>
'''
# DESCRIPTION = '''
# <div>
# <h1 style="text-align: center;">Chimera Image Generation</h1>
# <p>This contains a Stable Diffusor from <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0"><b>stabilityai/stable-diffusion-xl-base-1.0</b></a> and a Multimodal from <a href="https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers"><b>xtuner/llava-llama-3-8b-v1_1-transformers</b></a></p>
# </div>
# '''
# Initialize the models
# llava_model = LlavaForConditionalGeneration.from_pretrained(
# "xtuner/llava-llama-3-8b-v1_1-transformers",
# torch_dtype=torch.float16,
# low_cpu_mem_usage=True,
# )
# llava_model.to("cuda:0")
# processor = AutoProcessor.from_pretrained("xtuner/llava-llama-3-8b-v1_1-transformers")
# llava_model.generation_config.eos_token_id = 128009
# # Initialize Stable Diffusion pipelines
# base = DiffusionPipeline.from_pretrained(
# "stabilityai/stable-diffusion-xl-base-1.0",
# torch_dtype=torch.float16,
# variant="fp16",
# use_safetensors=True,
# )
# base.to('cuda')
# refiner = DiffusionPipeline.from_pretrained(
# "stabilityai/stable-diffusion-xl-base-1.0",
# text_encoder_2=base.text_encoder_2,
# vae=base.vae,
# torch_dtype=torch.float16,
# use_safetensors=True,
# variant="fp16",
# )
# refiner.to('cuda')
# load both base and refiner
base = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda:0")
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0",
text_encoder_2=base.text_encoder_2,
vae=base.vae,
torch_dtype=torch.float16,
use_safetensor=True,
variant="fp16").to("cuda:0")
class ModeManager:
def __init__(self):
self.mode = None
def set_mode(self, mode):
if mode == "chatting":
self.mode = mode
else:
self.mode = mode
def get_mode(self):
return self.mode if self.mode is not None else "chatting"
mode_manager = ModeManager()
def multimodal_and_generation(message, history):
"""
Generates a response based on the input message and optionally an image.
"""
# image_path = None
# if "files" in message and message["files"]:
# if type(message["files"][-1]) == dict:
# image_path = message["files"][-1]["path"]
# else:
# image_path = message["files"][-1]
# else:
# for hist in history:
# if type(hist[0]) == tuple:
# image_path = hist[0][0]
# if image_path is None:
input_prompt = message if isinstance(message, str) else message.get("text", "")
client = openai.OpenAI(api_key=API_KEY)
stream = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "system", "content": "You are a helpful assistant called 'chimera'."},
{"role": "user", "content": input_prompt}],
stream=True,
)
return stream
# else:
# prompt = f"user\n\n<image>\n{message['text']}assistant\n\n"
# image = Image.open(image_path)
# inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
# streamer = TextIteratorStreamer(processor.tokenizer, **{"skip_special_tokens": False, "skip_prompt": True})
# generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
# thread = threading.Thread(target=llava_model.generate, kwargs=generation_kwargs)
# thread.start()
# return streamer
# function to take input and generate text tokena
@spaces.GPU(duration=120)
def diffusing(prompt: str,
history):
"""
Takes input, passes it into the pipeline,
get the top 5 scores, and ouput those scores into images
"""
# n_steps = int(n_steps)
# Generate image based on text
image_base = base(
prompt=prompt,
num_inference_steps=40,
denoising_end=0.8,
output_type="latent"
).images
image = refiner(
prompt=prompt,
num_inference_steps=40,
denoising_start=0.8,
image=image_base
).images[0]
return image
def check_cuda_availability():
if torch.cuda.is_available():
return f"GPU: {torch.cuda.get_device_name(0)}"
else:
return "No CUDA device found."
mode = ""
# logger.debug(f"\n\nthis is the mode before calling it in bot_comms: {mode}\n\n")
# Image created from diffusing
image_created = {}
@spaces.GPU(duration=120)
def bot_comms(message, history):
"""
Handles communication between Gradio and the models.
"""
# ensures message is a dictionary
if not isinstance(message, dict):
message = {"text": message}
if message["text"] == "check cuda":
logger.debug("Checking CUDA availability.")
return check_cuda_availability()
# if message["text"] == "imagery":
# logger.debug("Switching to imagery mode.")
# # mode_manager.set_mode("imagery")
# mode += "imagery"
# # logger.debug(f"\nimagery mode: {mode}\n")
# return "Imagery On! Type your prompt to make the image πΌοΈ"
# if message["text"] == "chatting":
# logger.debug("Switching to chatting mode.")
# # mode_manager.set_mode("chatting")
# mode += "chatting"
# # logger.debug(f"\nchatting mode: {mode}\n")
# return "Imagery Off. Ask me any questions. βοΈ"
# if mode == "imagery":
# logger.debug("Processing imagery prompt.")
# if isinstance(message, dict) and "text" in message:
# message = message["text"]
# image = diffusing(message)
# # mode_gradio("imagery")
# image_created["Image"] = image
# return image
buffer = ""
gpt_outputs = []
# if mode == "chatting" or mode == "":
# logger.debug("On chatting or no mode.\n\n")
stream = multimodal_and_generation(message, history)
mode += "chatting"
for chunk in stream:
if chunk is not None and hasattr(chunk.choices[0].delta, "content"):
logger.debug("\n\nFound the chunk in stream for gpt-3.5\n\n")
text = chunk.choices[0].delta.content
if text:
gpt_outputs.append(text)
buffer += text
yield "".join(gpt_outputs)
chatbot = gr.Chatbot(height=600, label="Chimera AI")
# chat_input = gr.MultimodalTextbox(interactive=True, file_types=["images"], placeholder="Enter your question or upload an image.", show_label=False)
# with gr.Blocks(fill_height=True) as demo:
# gr.Markdown(DESCRIPTION)
# # image_output = gr.Image(type="pil", label="Generated Image")
# # def process_response(message, history):
# # response = bot_comms(message, history)
# # if isinstance(response, tuple) and len(response) == 2:
# # text, image = response
# # return text, image
# # return response, None
# # chatbot_output = gr.Chatbot(height=600, label="Chimera AI")
# # chat_input.submit(process_response, inputs=[chat_input, chatbot], outputs=[chatbot_output, image_output])
# if mode_manager.get_mode() == "imagery":
# # # Ensure's a unique block ID for image output
# gr.Interface(
# fn=diffusing,
# inputs="text",
# outputs="image",
# fill_height=True,
# )
# # with gr.Blocks():
# # gr.Interface(
# # fn=diffusing,
# # inputs='text',
# # outputs='image',
# # fill_height=True,
# # )
# # # Customize chatinterface to handle tuples
# # # def custom_fn(*args, **kwargs):
# # # result = list(bot_comms(*args, **kwargs))
# # # output = []
# # # for item in result:
# # # if isinstance(item, tuple) and isinstance(item[1], Image.Image):
# # # output.append((item[0], None))
# # # output.append((None, item[1]))
# # # else:
# # # output.append(item)
# # # return output
# # else:
# # # Unique block ID for chat interface
# # with gr.Blocks():
# # gr.ChatInterface(
# # fn=bot_comms,
# # chatbot=chatbot,
# # fill_height=True,
# # multimodal=True,
# # textbox=chat_input,
# # )
# if __name__ == "__main__":
# demo.launch()
with gr.Blocks(fill_height=True) as demo:
with gr.Row():
with gr.Column():
gr.Markdown(DESCRIPTION)
image_prompt = gr.Textbox(label="Image Prompt")
output_image = gr.Image(label="Generated Image")
generate_image_button = gr.Button("Generate Image")
generate_image_button.click(fn=diffusing, inputs=image_prompt, outputs=output_image)
with gr.Column():
gr.Markdown('''
<div>
<h1 style="text-align: center;">Chimera Text Generation</h1>
<p style="text-align: center;">This contains a Generative LLM from <a href="https://openai.com/"><b>Open AI</b></a> called GPT-3.5-Turbo</p>
</div>
''')
# text_prompt = gr.Textbox(label="Text Prompt")
# text_output = gr.Textbox(label="Generated Text")
# generate_text_button = gr.Button("Generated Text")
# generate_text_button.click(fn=bot_comms, inputs=text_prompt, outputs=text_output)
chat = gr.ChatInterface(fn=bot_comms)
# gr.Markdown(DESCRIPTION)
# if mode == "chatting":
# gr.Interface(
# fn=bot_comms,
# inputs="text",
# outputs="text",
# fill_height=True,
# )
# g
# # logger.debug(f"\n|now on chat interface|\n")
# gr.ChatInterface(
# fn=bot_comms,
# chatbot=chatbot,
# fill_height=True,
# multimodal=True,
# textbox=chat_input,
# )
# if __name__ == "__main__":
# demo.launch()
demo.launch() |