sandeepmajumdar's picture
Update app.py
c92b89d
raw
history blame
1.26 kB
import gradio as gr
import requests
import os
##Bloom
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
HF_TOKEN = os.environ["HF_TOKEN"]
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
def generate(prompt):
json_ = {"inputs": prompt,
"parameters":
{
"top_p": 0.9,
"temperature": 1.1,
"max_new_tokens": 64,
"return_full_text": False,
},
"options":
{"use_cache": True,
"wait_for_model": True,
},}
response = requests.post(API_URL, headers=headers, json=json_)
output = response.json()
output_tmp = output[0]['generated_text']
return output_tmp
demo = gr.Blocks()
with demo:
gr.Markdown("<h1><center>Article Generation using Bloom</center></h1>")
with gr.Row():
example_prompt = gr.Radio( [
"The main cloud services provided by AWS are: ",
"The pricing of Amazon EC3 is: ",
"The main competitors of AWS are: ", ], label= "Try these prompts in sequence, or type any text of your choice")
with gr.Row():
generated_txt = gr.Textbox()
b1 = gr.Button("Generate SQL")
b1.click(generate,inputs=example_prompt, outputs=generated_txt)
demo.launch(enable_queue=True)