Spaces:
Runtime error
Runtime error
File size: 10,800 Bytes
9cedb26 2eba696 9cedb26 2eba696 9cedb26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import os
import tempfile
import time
import gradio as gr
import numpy as np
import torch
import yt_dlp as youtube_dl
from gradio_client import Client
from pyannote.audio import Pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
YT_LENGTH_LIMIT_S = 36000 # limit to 1 hour YouTube files
SAMPLING_RATE = 16000
API_URL = "https://sanchit-gandhi-whisper-jax.hf.space/"
# set up the Gradio client
client = Client(API_URL)
# set up the diarization pipeline
diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=True)
def format_string(timestamp):
"""
Reformat a timestamp string from (HH:)MM:SS to float seconds. Note that the hour column
is optional, and is appended within the function if not input.
Args:
timestamp (str):
Timestamp in string format, either MM:SS or HH:MM:SS.
Returns:
seconds (float):
Total seconds corresponding to the input timestamp.
"""
split_time = timestamp.split(":")
split_time = [float(sub_time) for sub_time in split_time]
if len(split_time) == 2:
split_time.insert(0, 0)
seconds = split_time[0] * 3600 + split_time[1] * 60 + split_time[2]
return seconds
# Adapted from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
"""
Reformat a timestamp from a float of seconds to a string in format (HH:)MM:SS. Note that the hour
column is optional, and is appended in the function if the number of hours > 0.
Args:
seconds (float):
Total seconds corresponding to the input timestamp.
Returns:
timestamp (str):
Timestamp in string format, either MM:SS or HH:MM:SS.
"""
if seconds is not None:
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
else:
# we have a malformed timestamp so just return it as is
return seconds
def format_as_transcription(raw_segments):
return "\n".join(
[
f"{chunk['speaker']} [{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
for chunk in raw_segments
]
)
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_length_s = format_string(file_length)
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def align(transcription, segments, group_by_speaker=True):
transcription_split = transcription.split("\n")
# re-format transcription from string to List[Dict]
transcript = []
for chunk in transcription_split:
start_end, transcription = chunk[1:].split("] ")
start, end = start_end.split("->")
transcript.append({"timestamp": (format_string(start), format_string(end)), "text": transcription})
# diarizer output may contain consecutive segments from the same speaker (e.g. {(0 -> 1, speaker_1), (1 -> 1.5, speaker_1), ...})
# we combine these segments to give overall timestamps for each speaker's turn (e.g. {(0 -> 1.5, speaker_1), ...})
new_segments = []
prev_segment = cur_segment = segments[0]
for i in range(1, len(segments)):
cur_segment = segments[i]
# check if we have changed speaker ("label")
if cur_segment["label"] != prev_segment["label"] and i < len(segments):
# add the start/end times for the super-segment to the new list
new_segments.append(
{
"segment": {"start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["start"]},
"speaker": prev_segment["label"],
}
)
prev_segment = segments[i]
# add the last segment(s) if there was no speaker change
new_segments.append(
{
"segment": {"start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["end"]},
"speaker": prev_segment["label"],
}
)
# get the end timestamps for each chunk from the ASR output
end_timestamps = np.array([chunk["timestamp"][-1] for chunk in transcript])
segmented_preds = []
# align the diarizer timestamps and the ASR timestamps
for segment in new_segments:
# get the diarizer end timestamp
end_time = segment["segment"]["end"]
# find the ASR end timestamp that is closest to the diarizer's end timestamp and cut the transcript to here
upto_idx = np.argmin(np.abs(end_timestamps - end_time))
if group_by_speaker:
segmented_preds.append(
{
"speaker": segment["speaker"],
"text": "".join([chunk["text"] for chunk in transcript[: upto_idx + 1]]),
"timestamp": (transcript[0]["timestamp"][0], transcript[upto_idx]["timestamp"][1]),
}
)
else:
for i in range(upto_idx + 1):
segmented_preds.append({"speaker": segment["speaker"], **transcript[i]})
# crop the transcripts and timestamp lists according to the latest timestamp (for faster argmin)
transcript = transcript[upto_idx + 1 :]
end_timestamps = end_timestamps[upto_idx + 1 :]
# final post-processing
transcription = format_as_transcription(segmented_preds)
return transcription
def transcribe(audio_path, group_by_speaker=True):
# run Whisper JAX asynchronously using Gradio client (endpoint)
job = client.submit(
audio_path,
"transcribe",
True,
api_name="/predict_1",
)
# run diarization while we wait for Whisper JAX
diarization = diarization_pipeline(audio_path)
segments = diarization.for_json()["content"]
# only fetch the transcription result after performing diarization
transcription, _ = job.result()
# align the ASR transcriptions and diarization timestamps
transcription = align(transcription, segments, group_by_speaker=group_by_speaker)
return transcription
def transcribe_yt(yt_url, group_by_speaker=True):
# run Whisper JAX asynchronously using Gradio client (endpoint)
job = client.submit(
yt_url,
"transcribe",
True,
api_name="/predict_2",
)
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, SAMPLING_RATE)
inputs = torch.from_numpy(inputs).float()
inputs = inputs.unsqueeze(0)
diarization = diarization_pipeline(
{"waveform": inputs, "sample_rate": SAMPLING_RATE},
)
segments = diarization.for_json()["content"]
# only fetch the transcription result after performing diarization
transcription, _ = job.result()
# align the ASR transcriptions and diarization timestamps
transcription = align(transcription, segments, group_by_speaker=group_by_speaker)
return html_embed_str, transcription
title = "Whisper JAX + Speaker Diarization ⚡️"
description = """Combine the speed of Whisper JAX with pyannote speaker diarization to transcribe meetings in super fast time.
"""
article = "Whisper large-v2 model by OpenAI. Speaker diarization model by pyannote. Whisper JAX backend running JAX on a TPU v4-8 through the generous support of the [TRC](https://sites.research.google/trc/about/) programme. Whisper JAX [code](https://github.com/sanchit-gandhi/whisper-jax) and Gradio demo by 🤗 Hugging Face."
microphone = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", optional=True, type="filepath"),
gr.inputs.Checkbox(default=True, label="Group by speaker"),
],
outputs=[
gr.outputs.Textbox(label="Transcription").style(show_copy_button=True),
],
allow_flagging="never",
title=title,
description=description,
article=article,
)
audio_file = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"),
gr.inputs.Checkbox(default=True, label="Group by speaker"),
],
outputs=[
gr.outputs.Textbox(label="Transcription").style(show_copy_button=True),
],
allow_flagging="never",
title=title,
description=description,
article=article,
)
youtube = gr.Interface(
fn=transcribe_yt,
inputs=[
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.inputs.Checkbox(default=True, label="Group by speaker"),
],
outputs=[
gr.outputs.HTML(label="Video"),
gr.outputs.Textbox(label="Transcription").style(show_copy_button=True),
],
allow_flagging="never",
title=title,
examples=[["https://www.youtube.com/watch?v=m8u-18Q0s7I", True]],
cache_examples=False,
description=description,
article=article,
)
demo = gr.Blocks()
with demo:
gr.TabbedInterface([microphone, audio_file, youtube], ["Microphone", "Audio File", "YouTube"])
demo.queue(concurrency_count=1, max_size=5)
demo.launch()
|