File size: 21,676 Bytes
f7c4454 7ee8825 d682c70 f7c4454 7ee8825 7cacb27 31b509b 7ee8825 31b509b d682c70 31b509b 3a64abf d682c70 7ee8825 0a65462 7ee8825 31b509b 7ee8825 dfbbd12 7ee8825 ea17589 dfbbd12 31b509b 7ee8825 31b509b 7ee8825 31b509b 7ee8825 31b509b 9599fd6 7cacb27 31b509b 7ee8825 d682c70 7ee8825 d682c70 7ee8825 31b509b 7ee8825 31b509b 7ee8825 31b509b 7ee8825 31b509b 7ee8825 31b509b 7ee8825 31b509b 7ee8825 31b509b 7ee8825 d682c70 31b509b 7ee8825 31b509b 867afbb 98b8872 867afbb d682c70 7ee8825 d682c70 31b509b 7ee8825 31b509b 7ee8825 31b509b d682c70 7ee8825 d682c70 7cacb27 fc1a612 7cacb27 7ee8825 7cacb27 d682c70 dfbbd12 31b509b 7ee8825 7cacb27 31b509b 7cacb27 7ee8825 31b509b 7ee8825 31b509b 7ee8825 7cacb27 31b509b 0a65462 31b509b 0a65462 31b509b 0a65462 31b509b 0a65462 31b509b 0a65462 31b509b 6d01f32 31b509b 7ee8825 6d01f32 7ee8825 6d01f32 7ee8825 6d01f32 7ee8825 d682c70 7ee8825 31b509b 7ee8825 6d01f32 31b509b d682c70 7ee8825 d682c70 7ee8825 d682c70 7ee8825 d682c70 7ee8825 31b509b 7ee8825 31b509b 7ee8825 dfbbd12 7ee8825 31b509b dfbbd12 31b509b 7ee8825 dfbbd12 7ee8825 dfbbd12 31b509b 6d01f32 31b509b 6d01f32 31b509b 7cacb27 6d01f32 31b509b 6d01f32 31b509b 6d01f32 dfbbd12 31b509b dfbbd12 9599fd6 7cacb27 dfbbd12 6d01f32 dfbbd12 46f5c01 31b509b dfbbd12 6d01f32 31b509b 6d01f32 dfbbd12 31b509b dfbbd12 6d01f32 dfbbd12 31b509b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
"""
update time: 2025.01.09
verson: 0.1.125
"""
import json
import re
import time
from datetime import datetime, timedelta
from typing import List, Dict, Optional
import aiohttp
import requests
debug = False
# 全局变量
last_request_time = 0 # 上次请求的时间戳
cache_duration = 14400 # 缓存有效期,单位:秒 (4小时)
'''用于存储缓存的模型数据'''
cached_models = {
"object": "list",
"data": [],
"version": "0.1.125",
"provider": "DeGPT",
"name": "DeGPT",
"default_locale": "en-US",
"status": True,
"time": 0
}
'''基础请求地址'''
base_addrs = [
# "America"
"https://usa-chat.degpt.ai/api",
# "Singapore"
"https://singapore-chat.degpt.ai/api",
# "Korea"
"https://korea-chat.degpt.ai/api"
]
'''基础域名'''
base_url = 'https://singapore-chat.degpt.ai/api'
'''基础模型'''
base_model = "Pixtral-124B"
# 全局变量:存储所有模型的统计信息
# 格式:{model_name: {"calls": 调用次数, "fails": 失败次数, "last_fail": 最后失败时间}}
MODEL_STATS: Dict[str, Dict] = {}
def record_call(model_name: str, success: bool = True) -> None:
"""
记录模型调用情况
Args:
model_name: 模型名称
success: 调用是否成功
"""
global MODEL_STATS
if model_name not in MODEL_STATS:
MODEL_STATS[model_name] = {"calls": 0, "fails": 0, "last_fail": None}
stats = MODEL_STATS[model_name]
stats["calls"] += 1
if not success:
stats["fails"] += 1
stats["last_fail"] = datetime.now()
def get_auto_model(cooldown_seconds: int = 300) -> str:
"""异步获取最优模型"""
try:
if not MODEL_STATS:
get_models()
best_model = None
best_rate = -1.0
now = datetime.now()
for name, stats in MODEL_STATS.items():
if stats.get("last_fail") and (now - stats["last_fail"]) < timedelta(seconds=cooldown_seconds):
continue
total_calls = stats["calls"]
if total_calls > 0:
success_rate = (total_calls - stats["fails"]) / total_calls
if success_rate > best_rate:
best_rate = success_rate
best_model = name
default_model = best_model or base_model
if debug:
print(f"选择模型: {default_model}")
return default_model
except Exception as e:
if debug:
print(f"模型选择错误: {e}")
return base_model
def reload_check():
"""检查并更新系统状态
1. 如果模型数据为空,更新模型数据
2. 测试当前base_url是否可用,不可用则切换
"""
global base_url, cached_models
try:
# 检查模型数据
if not cached_models["data"]:
if debug:
print("模型数据为空,开始更新...")
get_models()
# 测试用例 - 平衡效率和功能验证
test_payload = {
"model": base_model,
"messages": [{
"role": "user",
"content": [{"type": "text", "text": "test"}]
}],
"temperature": 0.7,
"max_tokens": 50,
"top_p": 1.0,
"frequency_penalty": 0.0,
"project": "DecentralGPT",
"stream": True
}
headers = {
'Accept': '*/*',
'Content-Type': 'application/json'
}
with aiohttp.ClientSession() as session:
# 测试当前URL
try:
with session.post(
f"{base_url}/v0/chat/completion/proxy",
headers=headers,
json=test_payload,
timeout=5 # 较短的超时时间提高效率
) as response:
if response.status == 200:
# 验证响应格式
if response.read():
if debug:
print(f"当前URL可用: {base_url}")
return
except Exception as e:
if debug:
print(f"当前URL不可用: {e}")
# 测试其他URL
for url in base_addrs:
if url == base_url:
continue
try:
with session.post(
f"{url}/v0/chat/completion/proxy",
headers=headers,
json=test_payload,
timeout=5
) as response:
if response.status == 200 and response.read():
base_url = url
if debug:
print(f"切换到新URL: {base_url}")
return
except Exception as e:
if debug:
print(f"URL {url} 测试失败: {e}")
continue
if debug:
print("所有URL不可用,保持当前URL")
except Exception as e:
if debug:
print(f"系统检查失败: {e}")
def _fetch_and_update_models():
"""Thread-safe model fetching and cache updating"""
global cached_models
try:
get_from_js()
except Exception as e:
print(f"{e}")
try:
get_alive_models()
except Exception as e:
print(f"{e}")
def get_models():
"""model data retrieval with thread safety"""
global cached_models, last_request_time
current_time = time.time()
if (current_time - last_request_time) > cache_duration:
try:
# Update timestamp before awaiting to prevent concurrent updates
last_request_time = current_time
_fetch_and_update_models()
except Exception as e:
print(f"{e}")
return json.dumps(cached_models)
def get_alive_models():
"""
获取活的模型版本,并更新全局缓存
"""
global cached_models, last_request_time
# 发送 GET 请求
url = 'https://www.degpt.ai/api/config'
headers = {'Content-Type': 'application/json'}
response = requests.get(url, headers=headers)
# 检查响应是否成功
if response.status_code == 200:
try:
data = response.json() # 解析响应 JSON 数据
default_models = data.get("default_models", "").split(",") # 获取默认模型并分割成列表
# 获取当前时间戳(以秒为单位)
timestamp_in_seconds = time.time()
# 转换为毫秒(乘以 1000)
timestamp_in_milliseconds = int(timestamp_in_seconds * 1000)
## config
cached_models['version']=data['version']
cached_models['provider']=data['provider']
cached_models['name']=data['provider']
cached_models['time']=timestamp_in_milliseconds
if default_models:
# print("\n提取的模型列表:")
existing_ids = {m.get('id') for m in cached_models["data"]}
for model_id in default_models:
record_call(model_id)
if model_id and model_id not in existing_ids:
model_data = {
"id": model_id,
"object": "model",
"model": model_id,
"created": timestamp_in_milliseconds,
"owned_by": model_id.split("-")[0] if "-" in model_id else "unknown",
"name": model_id,
"description": '',
"support": '',
"tip": ''
}
cached_models["data"].append(model_data)
# 更新全局缓存
last_request_time = timestamp_in_seconds # 更新缓存时间戳
# print("获取新的模型数据:", models)
except json.JSONDecodeError as e:
print("JSON 解码错误:", e)
else:
print(f"请求失败,状态码: {response.status_code}")
def parse_models_from_js(js_content: str) -> List[Dict]:
"""解析JS内容中的模型信息"""
try:
pattern = r'models\s*:\s*\[([^\]]+)\]'
match = re.search(pattern, js_content)
if match:
models_data = match.group(1)
models_data = re.sub(r'(\w+):', r'"\1":', models_data)
models_data = models_data.replace("'", '"')
models_data = f"[{models_data}]"
try:
models = json.loads(models_data)
return models
except json.JSONDecodeError as e:
return []
return []
except Exception as e:
return []
# def get_model_names_from_js(url="https://www.degpt.ai/", timeout: int = 60):
# global cached_models
# try:
# with async_playwright() as p:
# browser = p.chromium.launch(
# headless=True,
# args=['--no-sandbox']
# )
# context = browser.new_context(
# viewport={'width': 1920, 'height': 1080},
# user_agent='Mozilla/5.0 (Windows NT 10.0; Win64; x64) Chrome/119.0.0.0 Safari/537.36'
# )
# page = context.new_page()
#
# def handle_response(response):
# try:
# if response.request.resource_type == "script":
# content_type = response.headers.get('content-type', '').lower()
# if 'javascript' in content_type:
# js_content = response.text()
# if 'models' in js_content:
# # print(f"找到包含模型信息的JS文件: {response.url}")
# models = parse_models_from_js(js_content)
# if models:
# # print("\n提取的模型列表:")
# existing_ids = {m.get('id') for m in cached_models["data"]}
# for model in models:
# model_id = model.get('model', '').strip()
# # print(f"- 名称: {model.get('name', '')}")
# # print(f" 模型: {model.get('model', '')}")
# # print(f" 描述: {model.get('desc', '')}")
# record_call(model_id)
# if model_id and model_id not in existing_ids:
# model_data = {
# "id": model_id,
# "object": "model",
# "model": model_id,
# "created": int(time.time()),
# "owned_by": model_id.split("-")[0] if "-" in model_id else "unknown",
# "name": model.get('name', ''),
# "description": model.get('desc', ''),
# "support": model.get('support', 'text'),
# "tip": model.get('tip', '')
# }
# cached_models["data"].append(model_data)
# # print(f"添加新模型: {model_id}")
# except Exception as e:
# print(f"处理响应时发生错误: {str(e)}")
# logging.error(f"Response处理异常: {e}", exc_info=True)
#
# page.on("response", handle_response)
#
# try:
# page.goto(url, timeout=timeout * 1000, wait_until='networkidle')
# page.wait_for_timeout(5000)
# except Exception as e:
# print(f"页面加载错误: {str(e)}")
# logging.error(f"页面加载异常: {e}", exc_info=True)
# finally:
# browser.close()
# except Exception as e:
# print(f"提取过程发生错误: {str(e)}")
# get_from_js()
# raise
# def parse_models_and_urls_from_js(js_content: str) -> Dict:
# """从JS内容中解析模型和URL信息"""
# result = {"models": [], "urls": []}
#
# try:
# # 提取模型信息
# model_pattern = r'models\s*:\s*\[([^\]]+)\]'
# model_match = re.search(model_pattern, js_content)
#
# if model_match:
# models_data = model_match.group(1)
# models_data = re.sub(r'(\w+):', r'"\1":', models_data)
# models_data = models_data.replace("'", '"')
# models_data = f"[{models_data}]"
#
# try:
# models = json.loads(models_data)
# result["models"] = models
# except json.JSONDecodeError as e:
# print(f"Error decoding models JSON: {e}")
#
# # 提取URL信息
# url_pattern = r'\{name\s*:\s*"([^"]+)"\s*,\s*url\s*:\s*"([^"]+)"'
# url_matches = re.findall(url_pattern, js_content)
#
# if url_matches:
# urls = [{"name": name, "url": url} for name, url in url_matches]
# result["urls"] = urls
#
# return result
#
# except Exception as e:
# print(f"Error parsing JS content: {e}")
# return result
def get_from_js():
global cached_models
# 获取 JavaScript 文件内容
# url = "https://www.degpt.ai/_app/immutable/chunks/index.83d92b06.js"
# url = "https://www.degpt.ai/_app/immutable/chunks/index.4aecf75a.js"
url = "https://www.degpt.ai/_app/immutable/chunks/index.e0d19999.js"
response = requests.get(url)
if response.status_code == 200:
js_content = response.text
models = parse_models_from_js(js_content)
# xx = parse_models_and_urls_from_js(js_content)
if models:
if debug:
print("get_from_js提取的模型列表:")
existing_ids = {m.get('id') for m in cached_models["data"]}
for model in models:
model_id = model.get('model', '').strip()
if debug:
print(f"get_from_js 名称: {model.get('name', '')}")
print(f"get_from_js 模型: {model.get('model', '')}")
print(f"get_from_js 描述: {model.get('desc', '')}")
record_call(model_id)
if model_id and model_id not in existing_ids:
model_data = {
"id": model_id,
"object": "model",
"model": model_id,
"created": int(time.time()),
"owned_by": model_id.split("-")[0] if "-" in model_id else "unknown",
"name": model.get('name', ''),
"description": model.get('desc', ''),
"support": model.get('support', 'text'),
"tip": model.get('tip', '')
}
cached_models["data"].append(model_data)
if debug:
print(f"get_from_js添加新模型: {model_id}")
def is_model_available(model_id: str, cooldown_seconds: int = 300) -> bool:
"""
判断模型是否在模型列表中且非最近失败的模型
Args:
model_id: 模型ID,需要检查的模型标识符
cooldown_seconds: 失败冷却时间(秒),默认300秒
Returns:
bool: 如果模型可用返回True,否则返回False
Note:
- 当MODEL_STATS为空时会自动调用get_models()更新数据
- 检查模型是否在冷却期内,如果在冷却期则返回False
"""
global MODEL_STATS
# 如果MODEL_STATS为空,加载模型数据
if not MODEL_STATS:
get_models()
# 检查模型是否在统计信息中
if model_id not in MODEL_STATS:
return False
# 检查是否在冷却期内
stats = MODEL_STATS[model_id]
if stats["last_fail"]:
time_since_failure = datetime.now() - stats["last_fail"]
if time_since_failure < timedelta(seconds=cooldown_seconds):
return False
return True
def get_model_by_autoupdate(model_id: Optional[str] = None, cooldown_seconds: int = 300) -> Optional[str]:
"""
检查提供的model_id是否可用,如果不可用则返回成功率最高的模型
Args:
model_id: 指定的模型ID,可选参数
cooldown_seconds: 失败冷却时间(秒),默认300秒
Returns:
str | None: 返回可用的模型ID,如果没有可用模型则返回None
Note:
- 当MODEL_STATS为空时会自动调用get_models()更新数据
- 如果指定的model_id可用,则直接返回
- 如果指定的model_id不可用,则返回成功率最高的模型
"""
global MODEL_STATS
# 如果MODEL_STATS为空,加载模型数据
if not MODEL_STATS:
get_models()
# 如果提供了model_id且可用,直接返回
if model_id and is_model_available(model_id, cooldown_seconds):
return model_id
# 否则返回成功率最高的可用模型
return get_auto_model(cooldown_seconds=cooldown_seconds)
def is_chatgpt_format(data):
"""Check if the data is in the expected ChatGPT format"""
try:
# If the data is a string, try to parse it as JSON
if isinstance(data, str):
try:
data = json.loads(data)
except json.JSONDecodeError:
return False # If the string can't be parsed, it's not in the expected format
# Now check if data is a dictionary and contains the necessary structure
if isinstance(data, dict):
# Ensure 'choices' is a list and the first item has a 'message' field
if "choices" in data and isinstance(data["choices"], list) and len(data["choices"]) > 0:
if "message" in data["choices"][0]:
return True
except Exception as e:
print(f"Error checking ChatGPT format: {e}")
return False
def chat_completion_message(
user_prompt,
user_id: str = None,
session_id: str = None,
system_prompt="You are a helpful assistant.",
model=base_model,
project="DecentralGPT", stream=False,
temperature=0.3, max_tokens=1024, top_p=0.5,
frequency_penalty=0, presence_penalty=0):
"""未来会增加回话隔离: 单人对话,单次会话"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
return chat_completion_messages(messages, user_id, session_id, model, project, stream, temperature, max_tokens,
top_p, frequency_penalty,
presence_penalty)
def chat_completion_messages(
messages,
model=base_model,
user_id: str = None,
session_id: str = None,
project="DecentralGPT", stream=False, temperature=0.3, max_tokens=1024, top_p=0.5,
frequency_penalty=0, presence_penalty=0):
# 确保model有效
if not model or model == "auto":
model = get_auto_model()
else:
model = get_model_by_autoupdate(model)
if debug:
print(f"校准后的model: {model}")
headers = {
'sec-ch-ua-platform': '"macOS"',
'Referer': 'https://www.degpt.ai/',
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36',
'sec-ch-ua': 'Google Chrome";v="131", "Chromium";v="131", "Not_A Brand";v="24"',
'DNT': '1',
'Content-Type': 'application/json',
'sec-ch-ua-mobile': '?0'
}
payload = {
# make sure ok
"model": model,
"messages": messages,
"project": project,
"stream": stream,
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
"presence_penalty": presence_penalty
}
# print(json.dumps(headers, indent=4))
# print(json.dumps(payload, indent=4))
return chat_completion(headers, payload)
def chat_completion(headers, payload):
"""处理用户请求并保留上下文"""
try:
url = f'{base_url}/v0/chat/completion/proxy'
response = requests.post(url, headers=headers, json=payload)
response.encoding = 'utf-8'
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
print(f"请求失败: {e}")
return "请求失败,请检查网络或参数配置。"
except (KeyError, IndexError) as e:
print(f"解析响应时出错: {e}")
return "解析响应内容失败。"
return {}
# if __name__ == '__main__':
# print("get_models: ",get_models())
# print("cached_models:",cached_models)
# print("base_url: ",base_url)
# print("MODEL_STATS:",MODEL_STATS)
|