Spaces:
Build error
Build error
File size: 12,397 Bytes
e487255 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import time
import os
from pathlib import Path
from tqdm import tqdm
import random
import numpy as np
from torch import nn
from utils import torch_nanmean
from datasets import *
from model_builder import load_model
from scripts.tabular_baselines import get_scoring_string
from scripts import tabular_metrics
from scripts.transformer_prediction_interface import *
from scripts.baseline_prediction_interface import *
"""
===============================
PUBLIC FUNCTIONS FOR EVALUATION
===============================
"""
def eval_model(i, e, valid_datasets, test_datasets, eval_positions, bptt, add_name, base_path, device='cpu', eval_addition='', **kwargs):
metrics_test, config_sample, model_path = eval_model_on_ds(i, e, test_datasets, eval_positions, bptt, add_name, base_path, device=device, eval_addition=eval_addition, **kwargs)
metrics_valid, _, _ = eval_model_on_ds(i, e, valid_datasets, eval_positions, bptt, add_name, base_path, device=device, eval_addition=eval_addition, **kwargs)
return {'mean_auc_test': metrics_test['mean_roc_at_1000'], 'mean_auc_valid': metrics_valid['mean_roc_at_1000'], 'mean_ce_test': metrics_test['mean_ce_at_1000'], 'mean_ce_valid': metrics_valid['mean_ce_at_1000'], 'config_sample': config_sample, 'model_path': model_path}
def eval_model_on_ds(i, e, valid_datasets, eval_positions, bptt, add_name, base_path, device='cpu', eval_addition='', **kwargs):
# How to use: evaluate_without_fitting(i,0,valid_datasets, [1024], 100000, add_name=model_string, base_path=base_path,)
def check_file(e):
model_file = f'models_diff/prior_diff_real_checkpoint{add_name}_n_{i}_epoch_{e}.cpkt'
model_path = os.path.join(base_path, model_file)
# print('Evaluate ', model_path)
results_file = os.path.join(base_path,
f'models_diff/prior_diff_real_results{add_name}_n_{i}_epoch_{e}_{eval_addition}.pkl')
if not Path(model_path).is_file(): # or Path(results_file).is_file():
# print('checkpoint exists: ', Path(model_file).is_file(), ', results are written:', Path(results_file).is_file())
return None, None, None
return model_file, model_path, results_file
if e == -1: # use last checkpoint, if e == -1
for e_ in range(100, -1, -1):
model_file_, model_path_, results_file_ = check_file(e_)
if model_file_ is not None:
e = e_
model_file, model_path, results_file = model_file_, model_path_, results_file_
break
else:
model_file, model_path, results_file = check_file(e)
model, config_sample = load_model(base_path, model_file, device, None, verbose=False)
params = {'max_features': config_sample['num_features']
, 'rescale_features': config_sample["normalize_by_used_features"]
, 'normalize_to_ranking': config_sample["normalize_to_ranking"]
, 'normalize_with_sqrt': config_sample.get("normalize_with_sqrt", False)
}
metrics_valid = evaluate(datasets=valid_datasets, model=model[2], method='transformer', device=device, overwrite=True,
extend_features=True
# just removed the style keyword but transformer is trained with style, just empty
, save=False
, metric_used=tabular_metrics.cross_entropy
, return_tensor=True
, verbose=False
, eval_positions=eval_positions
, bptt=bptt
, base_path=None
, inference_mode=True
, **params
, **kwargs)
tabular_metrics.calculate_score_per_method(tabular_metrics.auc_metric, 'roc', metrics_valid, valid_datasets, eval_positions)
tabular_metrics.calculate_score_per_method(tabular_metrics.cross_entropy, 'ce', metrics_valid, valid_datasets, eval_positions)
return metrics_valid, config_sample, model_path
def evaluate(datasets, bptt, eval_positions, metric_used, model
, verbose=False
, return_tensor=False
, **kwargs):
"""
Evaluates a list of datasets for a model function.
:param datasets: List of datasets
:param bptt: maximum sequence length
:param eval_positions: List of positions where to evaluate models
:param verbose: If True, is verbose.
:param metric_used: Which metric is optimized for.
:param return_tensor: Wheater to return results as a pytorch.tensor or numpy, this is only relevant for transformer.
:param kwargs:
:return:
"""
overall_result = {'metric_used': get_scoring_string(metric_used)
, 'bptt': bptt
, 'eval_positions': eval_positions}
aggregated_metric_datasets, num_datasets = torch.tensor(0.0), 0
# For each dataset
for [ds_name, X, y, categorical_feats, _, _] in tqdm.tqdm(datasets, desc='Iterate over datasets') if verbose else datasets:
dataset_bptt = min(len(X), bptt)
# if verbose and dataset_bptt < bptt:
# print(f'Dataset too small for given sequence length, reducing to {len(X)} ({bptt})')
aggregated_metric, num = torch.tensor(0.0), 0
ds_result = {}
for eval_position in (eval_positions if verbose else eval_positions):
eval_position_real = int(dataset_bptt * 0.5) if 2 * eval_position > dataset_bptt else eval_position
eval_position_bptt = int(eval_position_real * 2.0)
r = evaluate_position(X, y, model=model
, num_classes=len(torch.unique(y))
, categorical_feats = categorical_feats
, bptt = eval_position_bptt
, ds_name=ds_name
, eval_position = eval_position_real
, metric_used = metric_used
,**kwargs)
if r is None:
continue
_, outputs, ys, best_configs, time_used = r
if torch.is_tensor(outputs):
outputs = outputs.to(outputs.device)
ys = ys.to(outputs.device)
ys = ys.T
ds_result[f'{ds_name}_best_configs_at_{eval_position}'] = best_configs
ds_result[f'{ds_name}_outputs_at_{eval_position}'] = outputs
ds_result[f'{ds_name}_ys_at_{eval_position}'] = ys
ds_result[f'{ds_name}_time_at_{eval_position}'] = time_used
new_metric = torch_nanmean(torch.stack([metric_used(ys[i], outputs[i]) for i in range(ys.shape[0])]))
if not return_tensor:
make_scalar = lambda x: float(x.detach().cpu().numpy()) if (torch.is_tensor(x) and (len(x.shape) == 0)) else x
new_metric = make_scalar(new_metric)
ds_result = {k: make_scalar(ds_result[k]) for k in ds_result.keys()}
lib = torch if return_tensor else np
if not lib.isnan(new_metric).any():
aggregated_metric, num = aggregated_metric + new_metric, num + 1
overall_result.update(ds_result)
if num > 0:
aggregated_metric_datasets, num_datasets = (aggregated_metric_datasets + (aggregated_metric / num)), num_datasets + 1
overall_result['mean_metric'] = aggregated_metric_datasets / num_datasets
return overall_result
"""
===============================
INTERNAL HELPER FUNCTIONS
===============================
"""
def check_file_exists(path):
"""Checks if a pickle file exists. Returns None if not, else returns the unpickled file."""
if (os.path.isfile(path)):
print(f'loading results from {path}')
with open(path, 'rb') as f:
return np.load(f, allow_pickle=True).tolist()
return None
def generate_valid_split(X, y, bptt, eval_position, split_number=1):
"""Generates a deteministic train-(test/valid) split. Both splits must contain the same classes and all classes in
the entire datasets. If no such split can be sampled in 7 passes, returns None.
:param X: torch tensor, feature values
:param y: torch tensor, class values
:param bptt: Number of samples in train + test
:param eval_position: Number of samples in train, i.e. from which index values are in test
:param split_number: The split id
:return:
"""
done, seed = False, 13
torch.manual_seed(split_number)
perm = torch.randperm(X.shape[0]) if split_number > 1 else torch.arange(0, X.shape[0])
X, y = X[perm], y[perm]
while not done:
if seed > 20:
return None, None # No split could be generated in 7 passes, return None
random.seed(seed)
i = random.randint(0, len(X) - bptt) if len(X) - bptt > 0 else 0
y_ = y[i:i + bptt]
# Checks if all classes from dataset are contained and classes in train and test are equal (contain same
# classes) and
done = len(torch.unique(y_)) == len(torch.unique(y))
done = done and torch.all(torch.unique(y_) == torch.unique(y))
done = done and len(torch.unique(y_[:eval_position])) == len(torch.unique(y_[eval_position:]))
done = done and torch.all(torch.unique(y_[:eval_position]) == torch.unique(y_[eval_position:]))
seed = seed + 1
eval_xs = torch.stack([X[i:i + bptt].clone()], 1)
eval_ys = torch.stack([y[i:i + bptt].clone()], 1)
return eval_xs, eval_ys
def evaluate_position(X, y, categorical_feats, model, bptt
, eval_position, overwrite, save, base_path, path_interfix, method, ds_name, fetch_only=False
, max_time=300, split_number=1
, per_step_normalization=False, **kwargs):
"""
Evaluates a dataset with a 'bptt' number of training samples.
:param X: Dataset X
:param y: Dataset labels
:param categorical_feats: Indices of categorical features.
:param model: Model function
:param bptt: Sequence length.
:param eval_position: Number of training samples.
:param overwrite: Wheater to ove
:param overwrite: If True, results on disk are overwritten.
:param save:
:param path_interfix: Used for constructing path to write on disk.
:param method: Model name.
:param ds_name: Datset name.
:param fetch_only: Wheater to calculate or only fetch results.
:param per_step_normalization:
:param kwargs:
:return:
"""
if save:
path = os.path.join(base_path, f'results/tabular/{path_interfix}/results_{method}_{ds_name}_{eval_position}_{bptt}_{split_number}.npy')
#log_path =
## Load results if on disk
if not overwrite:
result = check_file_exists(path)
if result is not None:
if not fetch_only:
print(f'Loaded saved result for {path}')
return result
elif fetch_only:
print(f'Could not load saved result for {path}')
return None
## Generate data splits
eval_xs, eval_ys = generate_valid_split(X, y, bptt, eval_position, split_number=split_number)
if eval_xs is None:
return None
print(f"No dataset could be generated {ds_name} {bptt}")
eval_ys = (eval_ys > torch.unique(eval_ys).unsqueeze(0)).sum(axis=1).unsqueeze(-1)
start_time = time.time()
if isinstance(model, nn.Module): # Two separate predict interfaces for transformer and baselines
outputs, best_configs = transformer_predict(model, eval_xs, eval_ys, eval_position, categorical_feats=categorical_feats, **kwargs), None
else:
_, outputs, best_configs = baseline_predict(model, eval_xs, eval_ys, categorical_feats
, eval_pos=eval_position
, max_time=max_time, **kwargs)
eval_ys = eval_ys[eval_position:]
if outputs is None:
return None
if torch.is_tensor(outputs): # Transfers data to cpu for saving
outputs = outputs.cpu()
eval_ys = eval_ys.cpu()
ds_result = None, outputs, eval_ys, best_configs, time.time() - start_time
if save:
with open(path, 'wb') as f:
np.save(f, ds_result)
print(f'saved results to {path}')
return ds_result |