Spaces:
Build error
Build error
File size: 16,495 Bytes
e487255 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
from catboost import CatBoostClassifier, Pool
import math
from sklearn.impute import SimpleImputer
import xgboost as xgb
from sklearn import neighbors
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
import numpy as np
from scripts import tabular_metrics
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
import time
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials , space_eval, rand
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import MinMaxScaler
import autosklearn.classification
CV = 5
MULTITHREAD = 1 # Number of threads baselines are able to use at most
param_grid, param_grid_hyperopt = {}, {}
def get_scoring_direction(metric_used):
# Not needed
if metric_used == tabular_metrics.auc_metric:
return -1
elif metric_used == tabular_metrics.cross_entropy:
return 1
else:
raise Exception('No scoring string found for metric')
def get_scoring_string(metric_used, multiclass=True, usage="sklearn_cv"):
if metric_used == tabular_metrics.auc_metric:
if usage == 'sklearn_cv':
return 'roc_auc_ovo'
elif usage == 'autogluon':
return 'log_loss' # Autogluon crashes when using 'roc_auc' with some datasets usning logloss gives better scores;
# We might be able to fix this, but doesn't work out of box.
# File bug report? Error happens with dataset robert and fabert
if multiclass:
return 'roc_auc_ovo_macro'
else:
return 'roc_auc'
elif usage == 'autosklearn':
if multiclass:
return autosklearn.metrics.log_loss # roc_auc only works for binary, use logloss instead
else:
return autosklearn.metrics.roc_auc
elif usage == 'catboost':
return 'MultiClass' # Effectively LogLoss, ROC not available
elif usage == 'xgb':
return 'logloss'
return 'roc_auc'
elif metric_used == tabular_metrics.cross_entropy:
if usage == 'sklearn_cv':
return 'neg_log_loss'
elif usage == 'autogluon':
return 'log_loss'
elif usage == 'autosklearn':
return autosklearn.metrics.log_loss
elif usage == 'catboost':
return 'MultiClass' # Effectively LogLoss
return 'logloss'
else:
raise Exception('No scoring string found for metric')
def eval_f(params, clf_, x, y, metric_used, start_time, max_time):
if time.time() - start_time > max_time:
return np.nan
scores = cross_val_score(clf_(**params), x, y, cv=CV, scoring=get_scoring_string(metric_used))
return -np.nanmean(scores)
def preprocess_impute(x, y, test_x, test_y, impute, one_hot, standardize, cat_features=[]):
import warnings
def warn(*args, **kwargs):
pass
warnings.warn = warn
x, y, test_x, test_y = x.cpu().numpy(), y.cpu().long().numpy(), test_x.cpu().numpy(), test_y.cpu().long().numpy()
if impute:
imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
imp_mean.fit(x)
x, test_x = imp_mean.transform(x), imp_mean.transform(test_x)
if one_hot:
def make_pd_from_np(x):
data = pd.DataFrame(x)
for c in cat_features:
data.iloc[:, c] = data.iloc[:, c].astype('int')
return data
x, test_x = make_pd_from_np(x), make_pd_from_np(test_x)
transformer = ColumnTransformer(transformers=[('cat', OneHotEncoder(handle_unknown='ignore', sparse=False), cat_features)], remainder="passthrough")
transformer.fit(x)
x, test_x = transformer.transform(x), transformer.transform(test_x)
if standardize:
scaler = MinMaxScaler()
scaler.fit(x)
x, test_x = scaler.transform(x), scaler.transform(test_x)
return x, y, test_x, test_y
## Auto Gluon
def autogluon_metric(x, y, test_x, test_y, cat_features, metric_used, max_time=300):
from autogluon.tabular import TabularPredictor # Inside function so package can be sued without installation
x, y, test_x, test_y = preprocess_impute(x, y, test_x, test_y
, one_hot=False
, cat_features=cat_features
, impute=False
, standardize=False)
train_data = pd.DataFrame(np.concatenate([x, y[:, np.newaxis]], 1))
test_data = pd.DataFrame(np.concatenate([test_x, test_y[:, np.newaxis]], 1))
# AutoGluon automatically infers datatypes, we don't specify the categorical labels
predictor = TabularPredictor(
label=train_data.columns[-1],
eval_metric=get_scoring_string(metric_used, usage='autogluon', multiclass=(len(np.unique(y)) > 2)),
problem_type='multiclass' if len(np.unique(y)) > 2 else 'binary'
## seed=int(y[:].sum()) doesn't accept seed
).fit(
train_data=train_data,
time_limit=max_time,
presets=['best_quality']
# The seed is deterministic but varies for each dataset and each split of it
)
pred = predictor.predict_proba(test_data, as_multiclass=True).values
metric = metric_used(test_y, pred)
return metric, pred, predictor.fit_summary()
## AUTO Sklearn
def autosklearn_metric(x, y, test_x, test_y, cat_features, metric_used, max_time=300):
return autosklearn2_metric(x, y, test_x, test_y, cat_features, metric_used, max_time=max_time, version=1)
from autosklearn.experimental.askl2 import AutoSklearn2Classifier
from autosklearn.classification import AutoSklearnClassifier
def autosklearn2_metric(x, y, test_x, test_y, cat_features, metric_used, max_time=300, version=2):
x, y, test_x, test_y = preprocess_impute(x, y, test_x, test_y
, one_hot=False
, cat_features=cat_features
, impute=False
, standardize=False)
def make_pd_from_np(x):
data = pd.DataFrame(x)
for c in cat_features:
data.iloc[:, c] = data.iloc[:, c].astype('category')
return data
x = make_pd_from_np(x)
test_x = make_pd_from_np(test_x)
clf_ = AutoSklearn2Classifier if version == 2 else AutoSklearnClassifier
clf = clf_(time_left_for_this_task=max_time,
memory_limit=4000,
n_jobs=MULTITHREAD,
seed=int(y[:].sum()),
# The seed is deterministic but varies for each dataset and each split of it
metric=get_scoring_string(metric_used, usage='autosklearn', multiclass=len(np.unique(y)) > 2))
# fit model to data
clf.fit(x, y)
pred = clf.predict_proba(test_x)
metric = metric_used(test_y, pred)
return metric, pred, None
param_grid_hyperopt['logistic'] = {
'penalty': hp.choice('penalty', ['l1', 'l2', 'none'])
, 'max_iter': hp.randint('max_iter', [50, 500])
, 'fit_intercept': hp.choice('fit_intercept', [True, False])
, 'C': hp.loguniform('C', -5, math.log(5.0))} # 'normalize': [False],
def logistic_metric(x, y, test_x, test_y, cat_features, metric_used, max_time=300):
x, y, test_x, test_y = preprocess_impute(x, y, test_x, test_y
, one_hot=True, impute=True, standardize=True
, cat_features=cat_features)
def clf_(**params):
return LogisticRegression(solver='saga', tol=1e-4, n_jobs=1, **params)
start_time = time.time()
def stop(trial):
return time.time() - start_time > max_time, []
best = fmin(
fn=lambda params: eval_f(params, clf_, x, y, metric_used, start_time, max_time),
space=param_grid_hyperopt['logistic'],
algo=rand.suggest,
rstate=np.random.RandomState(int(y[:].sum())),
early_stop_fn=stop,
# The seed is deterministic but varies for each dataset and each split of it
max_evals=10000)
best = space_eval(param_grid_hyperopt['logistic'], best)
clf = clf_(**best)
clf.fit(x, y)
pred = clf.predict_proba(test_x)
metric = metric_used(test_y, pred)
return metric, pred, best
## KNN
param_grid_hyperopt['knn'] = {'n_neighbors': hp.randint('n_neighbors', 1,16)
}
def knn_metric(x, y, test_x, test_y, cat_features, metric_used, max_time=300):
x, y, test_x, test_y = preprocess_impute(x, y, test_x, test_y,
one_hot=True, impute=True, standardize=True,
cat_features=cat_features)
def clf_(**params):
return neighbors.KNeighborsClassifier(n_jobs=1, **params)
start_time = time.time()
def stop(trial):
return time.time() - start_time > max_time, []
best = fmin(
fn=lambda params: eval_f(params, clf_, x, y, metric_used, start_time, max_time),
space=param_grid_hyperopt['knn'],
algo=rand.suggest,
rstate=np.random.RandomState(int(y[:].sum())),
early_stop_fn=stop,
# The seed is deterministic but varies for each dataset and each split of it
max_evals=10000)
best = space_eval(param_grid_hyperopt['knn'], best)
clf = clf_(**best)
clf.fit(x, y)
pred = clf.predict_proba(test_x)
metric = metric_used(test_y, pred)
return metric, pred, best
## GP
param_grid_hyperopt['gp'] = {
'params_y_scale': hp.loguniform('params_y_scale', math.log(0.05), math.log(5.0)),
'params_length_scale': hp.loguniform('params_length_scale', math.log(0.1), math.log(1.0)),
'n_jobs': hp.choice('njobs', [1])
}
def gp_metric(x, y, test_x, test_y, cat_features, metric_used, max_time=300):
x, y, test_x, test_y = preprocess_impute(x, y, test_x, test_y,
one_hot=True, impute=True, standardize=True,
cat_features=cat_features)
def clf_(params_y_scale,params_length_scale, **params):
return GaussianProcessClassifier(kernel= params_y_scale * RBF(params_length_scale), **params)
start_time = time.time()
def stop(trial):
return time.time() - start_time > max_time, []
best = fmin(
fn=lambda params: eval_f(params, clf_, x, y, metric_used, start_time, max_time),
space=param_grid_hyperopt['gp'],
algo=rand.suggest,
rstate=np.random.RandomState(int(y[:].sum())),
early_stop_fn=stop,
# The seed is deterministic but varies for each dataset and each split of it
max_evals=1000)
best = space_eval(param_grid_hyperopt['gp'], best)
clf = clf_(**best)
clf.fit(x, y)
pred = clf.predict_proba(test_x)
metric = metric_used(test_y, pred)
return metric, pred, best
# Catboost
# Hyperparameter space: https://arxiv.org/pdf/2106.03253.pdf
param_grid_hyperopt['catboost'] = {
'learning_rate': hp.loguniform('learning_rate', math.log(math.pow(math.e, -5)), math.log(1)),
'random_strength': hp.randint('random_strength', 1, 20),
'l2_leaf_reg': hp.loguniform('l2_leaf_reg', math.log(1), math.log(10)),
'bagging_temperature': hp.uniform('bagging_temperature', 0., 1),
'leaf_estimation_iterations': hp.randint('leaf_estimation_iterations', 1, 20),
'iterations': hp.randint('iterations', 100, 4000), # This is smaller than in paper, 4000 leads to ram overusage
}
def catboost_metric(x, y, test_x, test_y, cat_features, metric_used, max_time=300):
print(x)
x, y, test_x, test_y = preprocess_impute(x, y, test_x, test_y
, one_hot=False
, cat_features=cat_features
, impute=False
, standardize=False)
# Nans in categorical features must be encoded as separate class
x[:, cat_features], test_x[:, cat_features] = np.nan_to_num(x[:, cat_features], -1), np.nan_to_num(
test_x[:, cat_features], -1)
def make_pd_from_np(x):
data = pd.DataFrame(x)
for c in cat_features:
data.iloc[:, c] = data.iloc[:, c].astype('int')
return data
x = make_pd_from_np(x)
test_x = make_pd_from_np(test_x)
def clf_(**params):
return CatBoostClassifier(
loss_function=get_scoring_string(metric_used, usage='catboost'),
thread_count = MULTITHREAD,
used_ram_limit='4gb',
random_seed=int(y[:].sum()),
logging_level='Silent',
cat_features=cat_features,
**params)
start_time = time.time()
def stop(trial):
return time.time() - start_time > max_time, []
best = fmin(
fn=lambda params: eval_f(params, clf_, x, y, metric_used, start_time, max_time),
space=param_grid_hyperopt['catboost'],
algo=rand.suggest,
rstate=np.random.RandomState(int(y[:].sum())),
early_stop_fn=stop,
# The seed is deterministic but varies for each dataset and each split of it
max_evals=1000)
best = space_eval(param_grid_hyperopt['catboost'], best)
clf = clf_(**best)
clf.fit(x, y)
pred = clf.predict_proba(test_x)
metric = metric_used(test_y, pred)
return metric, pred, best
# XGBoost
# Hyperparameter space: https://arxiv.org/pdf/2106.03253.pdf
param_grid_hyperopt['xgb'] = {
'learning_rate': hp.loguniform('learning_rate', -7, math.log(1)),
'max_depth': hp.randint('max_depth', 1, 10),
'subsample': hp.uniform('subsample', 0.2, 1),
'colsample_bytree': hp.uniform('colsample_bytree', 0.2, 1),
'colsample_bylevel': hp.uniform('colsample_bylevel', 0.2, 1),
'min_child_weight': hp.loguniform('min_child_weight', -16, 5),
'alpha': hp.loguniform('alpha', -16, 2),
'lambda': hp.loguniform('lambda', -16, 2),
'gamma': hp.loguniform('gamma', -16, 2),
'n_estimators': hp.randint('n_estimators', 100, 4000), # This is smaller than in paper
}
def xgb_metric(x, y, test_x, test_y, cat_features, metric_used, max_time=300):
# XGB Documentation:
# XGB handles categorical data appropriately without using One Hot Encoding, categorical features are experimetal
# XGB handles missing values appropriately without imputation
x, y, test_x, test_y = preprocess_impute(x, y, test_x, test_y
, one_hot=False
, cat_features=cat_features
, impute=False
, standardize=False)
def clf_(**params):
return xgb.XGBClassifier(use_label_encoder=False
, nthread=1
, **params
, eval_metric=get_scoring_string(metric_used, usage='xgb') # AUC not implemented
)
start_time = time.time()
def stop(trial):
return time.time() - start_time > max_time, []
best = fmin(
fn=lambda params: eval_f(params, clf_, x, y, metric_used, start_time, max_time),
space=param_grid_hyperopt['xgb'],
algo=rand.suggest,
rstate=np.random.RandomState(int(y[:].sum())),
early_stop_fn=stop,
# The seed is deterministic but varies for each dataset and each split of it
max_evals=1000)
best = space_eval(param_grid_hyperopt['xgb'], best)
clf = clf_(**best)
clf.fit(x, y)
pred = clf.predict_proba(test_x)
metric = metric_used(test_y, pred)
return metric, pred, best
clf_dict = {'gp': gp_metric
, 'knn': knn_metric
, 'catboost': catboost_metric
, 'xgb': xgb_metric
, 'logistic': logistic_metric
, 'autosklearn': autosklearn_metric
, 'autosklearn2': autosklearn2_metric
, 'autogluon': autogluon_metric} |