File size: 9,432 Bytes
e487255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from copy import deepcopy
from priors.utils import uniform_int_sampler_f
from priors.differentiable_prior import DifferentiableHyperparameter
from ConfigSpace import hyperparameters as CSH
import torch
from priors.differentiable_prior import replace_differentiable_distributions

import ConfigSpace as CS

def get_general_config(max_features, bptt, eval_positions=None):
    """"
    Returns the general PFN training hyperparameters.
    """
    config_general = {
        "lr": CSH.UniformFloatHyperparameter('lr', lower=0.00002, upper=0.0002, log=True),
        "dropout": CSH.CategoricalHyperparameter('dropout', [0.0]),
        "emsize": CSH.CategoricalHyperparameter('emsize', [2 ** i for i in range(8, 9)]), ## upper bound is -1
        "batch_size": CSH.CategoricalHyperparameter('batch_size', [2 ** i for i in range(8, 9)]),
        "nlayers": CSH.CategoricalHyperparameter('nlayers', [12]),
        "num_features": max_features,
        "nhead": CSH.CategoricalHyperparameter('nhead', [4]),
        "nhid_factor": 2,
        "bptt": bptt,
        "eval_positions": None,
        "seq_len_used": bptt,
        "sampling": 'normal',#hp.choice('sampling', ['mixed', 'normal']), # uniform
        "epochs": 80,
        "num_steps": 100,
        "verbose": False,
        "pre_sample_causes": True, # This is MLP
        "mix_activations": False,#hp.choice('mix_activations', [True, False]),
    }

    return config_general

def get_flexible_categorical_config(max_features):
    """"
    Returns the configuration parameters for the tabular multiclass wrapper.
    """
    config_flexible_categorical = {
        "nan_prob_unknown_reason_reason_prior": CSH.CategoricalHyperparameter('nan_prob_unknown_reason_reason_prior', [1.0]),
        "categorical_feature_p": CSH.CategoricalHyperparameter('categorical_feature_p', [0.0]),
        "nan_prob_no_reason": CSH.CategoricalHyperparameter('nan_prob_no_reason', [0.0, 0.1, 0.2]),
        "nan_prob_unknown_reason": CSH.CategoricalHyperparameter('nan_prob_unknown_reason', [0.0]),
        "nan_prob_a_reason": CSH.CategoricalHyperparameter('nan_prob_a_reason', [0.0]),
        # "num_classes": lambda : random.randint(2, 10), "balanced": False,
        "max_num_classes": 2,
        "num_classes": 2,
        "noise_type": CSH.CategoricalHyperparameter('noise_type', ["Gaussian"]), # NN
        "balanced": True,
        "normalize_to_ranking": CSH.CategoricalHyperparameter('normalize_to_ranking', [False]),
        "set_value_to_nan": CSH.CategoricalHyperparameter('set_value_to_nan', [0.5, 0.2, 0.0]),
        "normalize_by_used_features": True,
        "num_features_used":
            {'uniform_int_sampler_f(3,max_features)': uniform_int_sampler_f(1, max_features)}
        # hp.choice('conv_activation', [{'distribution': 'uniform', 'min': 2.0, 'max': 8.0}, None]),
    }
    return config_flexible_categorical

def get_diff_flex():
    """"
    Returns the configuration parameters for a differentiable wrapper around the tabular multiclass wrapper.
    """
    diff_flex = {
        # "ordinal_pct": {'distribution': 'uniform', 'min': 0.0, 'max': 0.5},
        # "num_categorical_features_sampler_a": hp.choice('num_categorical_features_sampler_a',
        #                                                 [{'distribution': 'uniform', 'min': 0.3, 'max': 0.9}, None]),
        # "num_categorical_features_sampler_b": {'distribution': 'uniform', 'min': 0.3, 'max': 0.9},
        "output_multiclass_ordered_p": {'distribution': 'uniform', 'min': 0.0, 'max': 0.5}, #CSH.CategoricalHyperparameter('output_multiclass_ordered_p', [0.0, 0.1, 0.2]),
        "multiclass_type": {'distribution': 'meta_choice', 'choice_values': ['value', 'rank']},
    }

    return diff_flex

def get_diff_gp():
    """"
    Returns the configuration parameters for a differentiable wrapper around GP.
    """
    diff_gp = {
        'outputscale': {'distribution': 'meta_trunc_norm_log_scaled', 'max_mean': 10., 'min_mean': 0.00001, 'round': False,
                        'lower_bound': 0},
        'lengthscale': {'distribution': 'meta_trunc_norm_log_scaled', 'max_mean': 10., 'min_mean': 0.00001, 'round': False,
                        'lower_bound': 0},
        'noise': {'distribution': 'meta_choice', 'choice_values': [0.00001, 0.0001, 0.01]}
    }

    return diff_gp

def get_diff_causal():
    """"
    Returns the configuration parameters for a differentiable wrapper around MLP / Causal mixture.
    """
    diff_causal = {
        "num_layers": {'distribution': 'meta_trunc_norm_log_scaled', 'max_mean': 6, 'min_mean': 1, 'round': True,
                       'lower_bound': 2},
        # Better beta?
        "prior_mlp_hidden_dim": {'distribution': 'meta_trunc_norm_log_scaled', 'max_mean': 130, 'min_mean': 5,
                                 'round': True, 'lower_bound': 4},

        "prior_mlp_dropout_prob": {'distribution': 'meta_beta', 'scale': 0.9, 'min': 0.1, 'max': 5.0},
    # This mustn't be too high since activations get too large otherwise

        "noise_std": {'distribution': 'meta_trunc_norm_log_scaled', 'max_mean': .3, 'min_mean': 0.0001, 'round': False,
                      'lower_bound': 0.0},
        "init_std": {'distribution': 'meta_trunc_norm_log_scaled', 'max_mean': 10.0, 'min_mean': 0.01, 'round': False,
                     'lower_bound': 0.0},
        "num_causes": {'distribution': 'meta_trunc_norm_log_scaled', 'max_mean': 12, 'min_mean': 1, 'round': True,
                       'lower_bound': 1},
        "is_causal": {'distribution': 'meta_choice', 'choice_values': [True, False]},
        "pre_sample_weights": {'distribution': 'meta_choice', 'choice_values': [True, False]},
        "y_is_effect": {'distribution': 'meta_choice', 'choice_values': [True, False]},
        "prior_mlp_activations": {'distribution': 'meta_choice_mixed', 'choice_values': [
            torch.nn.Tanh
            , torch.nn.ReLU
            , torch.nn.Identity
            , lambda : torch.nn.LeakyReLU(negative_slope=0.1)
            , torch.nn.ELU
        ]},
        "block_wise_dropout": {'distribution': 'meta_choice', 'choice_values': [True, False]},
        "sort_features": {'distribution': 'meta_choice', 'choice_values': [True, False]},
        "in_clique": {'distribution': 'meta_choice', 'choice_values': [True, False]},
    }

    return diff_causal

def get_diff_prior_bag():
    """"
    Returns the configuration parameters for a GP and MLP / Causal mixture.
    """
    diff_prior_bag = {
        'prior_bag_exp_weights_1': {'distribution': 'uniform', 'min': 100000., 'max': 100001.},
        # MLP Weight (Biased, since MLP works better, 1.0 is weight for prior number 0)
    }

    return diff_prior_bag

def get_diff_config():
    """"
    Returns the configuration parameters for a differentiable wrapper around GP and MLP / Causal mixture priors.
    """
    diff_prior_bag = get_diff_prior_bag()
    diff_causal = get_diff_causal()
    diff_gp = get_diff_gp()
    diff_flex = get_diff_flex()

    config_diff = {'differentiable_hyperparameters': {**diff_prior_bag, **diff_causal, **diff_gp, **diff_flex}}

    return config_diff


def sample_differentiable(config):
    """"
    Returns sampled hyperparameters from a differentiable wrapper, that is it makes a non-differentiable out of
    differentiable.
    """
    # config is a dict of dicts, dicts that have a 'distribution' key are treated as distributions to be sampled
    result = deepcopy(config)
    del result['differentiable_hyperparameters']

    for k, v in config['differentiable_hyperparameters'].items():
        s_indicator, s_hp = DifferentiableHyperparameter(**v, embedding_dim=None,
                                                         device=None)()  # both of these are actually not used to the best of my knowledge
        result[k] = s_hp

    return result

def list_all_hps_in_nested(config):
    """"
    Returns a list of hyperparameters from a neszed dict of hyperparameters.
    """

    if isinstance(config, CSH.Hyperparameter):
        return [config]
    elif isinstance(config, dict):
        result = []
        for k, v in config.items():
            result += list_all_hps_in_nested(v)
        return result
    else:
        return []

def create_configspace_from_hierarchical(config):
    cs = CS.ConfigurationSpace()
    for hp in list_all_hps_in_nested(config):
        cs.add_hyperparameter(hp)
    return cs

def fill_in_configsample(config, configsample):
    # config is our dict that defines config distribution
    # configsample is a CS.Configuration
    hierarchical_configsample = deepcopy(config)
    for k, v in config.items():
        if isinstance(v, CSH.Hyperparameter):
            hierarchical_configsample[k] = configsample[v.name]
        elif isinstance(v, dict):
            hierarchical_configsample[k] = fill_in_configsample(v, configsample)
    return hierarchical_configsample


def evaluate_hypers(config, sample_diff_hps=False):
    """"
    Samples a hyperparameter configuration from a sampleable configuration (can be used in HP search).
    """
    if sample_diff_hps:
        # I do a deepcopy here, such that the config stays the same and can still be used with diff. hps
        config = deepcopy(config)
        replace_differentiable_distributions(config)
    cs = create_configspace_from_hierarchical(config)
    cs_sample = cs.sample_configuration()
    return fill_in_configsample(config, cs_sample)