File size: 8,907 Bytes
e487255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import math

import torch
import torch.nn as nn
from utils import normalize_data
import torch.nn.functional as F
from torch.nn import TransformerEncoder, TransformerEncoderLayer


class StyleEncoder(nn.Module):
    def __init__(self, em_size, hyperparameter_definitions):
        super().__init__()
        # self.embeddings = {}
        self.em_size = em_size
        # self.hyperparameter_definitions = {}
        # for hp in hyperparameter_definitions:
        #     self.embeddings[hp] = nn.Linear(1, self.em_size)
        # self.embeddings = nn.ModuleDict(self.embeddings)
        self.embedding = nn.Linear(hyperparameter_definitions.shape[0], self.em_size)

    def forward(self, hyperparameters):  # T x B x num_features
        # Make faster by using matrices
        # sampled_embeddings = [torch.stack([
        #     self.embeddings[hp](torch.tensor([batch[hp]], device=self.embeddings[hp].weight.device, dtype=torch.float))
        #     for hp in batch
        # ], -1).sum(-1) for batch in hyperparameters]
        # return torch.stack(sampled_embeddings, 0)
        return self.embedding(hyperparameters)


class _PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        self.d_model = d_model
        self.device_test_tensor = nn.Parameter(torch.tensor(1.))

    def forward(self, x):# T x B x num_features
        assert self.d_model % x.shape[-1]*2 == 0
        d_per_feature = self.d_model // x.shape[-1]
        pe = torch.zeros(*x.shape, d_per_feature, device=self.device_test_tensor.device)
        #position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        interval_size = 10
        div_term = (1./interval_size) * 2*math.pi*torch.exp(torch.arange(0, d_per_feature, 2, device=self.device_test_tensor.device).float()*math.log(math.sqrt(2)))
        #print(div_term/2/math.pi)
        pe[..., 0::2] = torch.sin(x.unsqueeze(-1) * div_term)
        pe[..., 1::2] = torch.cos(x.unsqueeze(-1) * div_term)
        return self.dropout(pe).view(x.shape[0],x.shape[1],self.d_model)


Positional = lambda _, emsize: _PositionalEncoding(d_model=emsize)

class EmbeddingEncoder(nn.Module):
    def __init__(self, num_features, em_size, num_embs=100):
        super().__init__()
        self.num_embs = num_embs
        self.embeddings = nn.Embedding(num_embs * num_features, em_size, max_norm=True)
        self.init_weights(.1)
        self.min_max = (-2,+2)

    @property
    def width(self):
        return self.min_max[1] - self.min_max[0]

    def init_weights(self, initrange):
        self.embeddings.weight.data.uniform_(-initrange, initrange)

    def discretize(self, x):
        split_size = self.width / self.num_embs
        return (x - self.min_max[0] // split_size).int().clamp(0, self.num_embs - 1)

    def forward(self, x):  # T x B x num_features
        x_idxs = self.discretize(x)
        x_idxs += torch.arange(x.shape[-1], device=x.device).view(1, 1, -1) * self.num_embs
        # print(x_idxs,self.embeddings.weight.shape)
        return self.embeddings(x_idxs).mean(-2)


class Normalize(nn.Module):
    def __init__(self, mean, std):
        super().__init__()
        self.mean = mean
        self.std = std

    def forward(self, x):
        return (x-self.mean)/self.std


def get_normalized_uniform_encoder(encoder_creator):
    """
    This can be used to wrap an encoder that is fed uniform samples in [0,1] and normalizes these to 0 mean and 1 std.
    For example, it can be used as `encoder_creator = get_normalized_uniform_encoder(encoders.Linear)`, now this can
    be initialized with `encoder_creator(feature_dim, in_dim)`.
    :param encoder:
    :return:
    """
    return lambda in_dim, out_dim: nn.Sequential(Normalize(.5, math.sqrt(1/12)), encoder_creator(in_dim, out_dim))


Linear = nn.Linear
MLP = lambda num_features, emsize: nn.Sequential(nn.Linear(num_features+1,emsize*2),
                                                 nn.ReLU(),
                                                 nn.Linear(emsize*2,emsize))

class NanHandlingEncoder(nn.Module):
    def __init__(self, num_features, emsize, keep_nans=True):
        super().__init__()
        self.num_features = 2 * num_features if keep_nans else num_features
        self.emsize = emsize
        self.keep_nans = keep_nans
        self.layer = nn.Linear(self.num_features, self.emsize)

    def forward(self, x):
        if self.keep_nans:
            x = torch.cat([torch.nan_to_num(x, nan=0.0), normalize_data(torch.isnan(x) * -1
                                                          + torch.logical_and(torch.isinf(x), torch.sign(x) == 1) * 1
                                                          + torch.logical_and(torch.isinf(x), torch.sign(x) == -1) * 2
                                                          )], -1)
        else:
            x = torch.nan_to_num(x, nan=0.0)
        return self.layer(x)

class Linear(nn.Linear):
    def __init__(self, num_features, emsize):
        super().__init__(num_features, emsize)
        self.num_features = num_features
        self.emsize = emsize

    def forward(self, x):
        x = torch.nan_to_num(x, nan=0.0)
        return super().forward(x)

class SequenceSpanningEncoder(nn.Module):
    # Regular Encoder transforms Seq_len, B, S -> Seq_len, B, E attending only to last dimension
    # This Encoder accesses the Seq_Len dimension additionally

    # Why would we want this? We can learn normalization and embedding of features
    #    , this might be more important for e.g. categorical, ordinal feats, nan detection
    # However maybe this can be easily learned through transformer as well?
    # A problem is to make this work across any sequence length and be independent of ordering

    # We could use average and maximum pooling and use those with a linear layer


    # Another idea !! Similar to this we would like to encode features so that their number is variable
    # We would like to embed features, also using knowledge of the features in the entire sequence

    # We could use convolution or another transformer
    # Convolution:

    # Transformer/Conv across sequence dimension that encodes and normalizes features
    #    -> Transformer across feature dimension that encodes features to a constant size

    # Conv with flexible features but no sequence info: S,B,F -(reshape)-> S*B,1,F
    #   -(Conv1d)-> S*B,N,F -(AvgPool,MaxPool)-> S*B,N,1 -> S,B,N
    # This probably won't work since it's missing a way to recognize which feature is encoded

    # Transformer with flexible features: S,B,F -> F,B*S,1 -> F2,B*S,1 -> S,B,F2

    def __init__(self, num_features, em_size):
        super().__init__()

        raise NotImplementedError()
        # Seq_len, B, S -> Seq_len, B, E
        #
        self.convs = torch.nn.ModuleList([nn.Conv1d(64 if i else 1, 64, 3) for i in range(5)])
        # self.linear = nn.Linear(64, emsize)

class TransformerBasedFeatureEncoder(nn.Module):
    def __init__(self, num_features, emsize):
        super().__init__()

        hidden_emsize = emsize
        encoder = Linear(1, hidden_emsize)
        n_out = emsize
        nhid = 2*emsize
        dropout =0.0
        nhead=4
        nlayers=4
        model = nn.Transformer(nhead=nhead, num_encoder_layers=4, num_decoder_layers=4, d_model=1)

    def forward(self, *input):
        # S,B,F -> F,S*B,1 -> F2,S*B,1 -> S,B,F2
        input = input.transpose()
        self.model(input)

class Conv(nn.Module):
    def __init__(self, input_size, emsize):
        super().__init__()
        self.convs = torch.nn.ModuleList([nn.Conv2d(64 if i else 1, 64, 3) for i in range(5)])
        self.linear = nn.Linear(64,emsize)


    def forward(self, x):
        size = math.isqrt(x.shape[-1])
        assert size*size == x.shape[-1]
        x = x.reshape(*x.shape[:-1], 1, size, size)
        for conv in self.convs:
            if x.shape[-1] < 4:
                break
            x = conv(x)
            x.relu_()
        x = nn.AdaptiveAvgPool2d((1,1))(x).squeeze(-1).squeeze(-1)
        return self.linear(x)




class CanEmb(nn.Embedding):
    def __init__(self, num_features, num_embeddings: int, embedding_dim: int, *args, **kwargs):
        assert embedding_dim % num_features == 0
        embedding_dim = embedding_dim // num_features
        super().__init__(num_embeddings, embedding_dim, *args, **kwargs)

    def forward(self, x):
        lx = x.long()
        assert (lx == x).all(), "CanEmb only works with tensors of whole numbers"
        x = super().forward(lx)
        return x.view(*x.shape[:-2], -1)

def get_Canonical(num_classes):
    return lambda num_features, emsize: CanEmb(num_features, num_classes, emsize)

def get_Embedding(num_embs_per_feature=100):
    return lambda num_features, emsize: EmbeddingEncoder(num_features, emsize, num_embs=num_embs_per_feature)