Spaces:
Build error
Build error
File size: 15,573 Bytes
e487255 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import os
import torch
import numpy as np
import time
import pickle
from scripts import tabular_metrics
from scripts.tabular_metrics import calculate_score_per_method
from scripts.tabular_evaluation import evaluate
from priors.differentiable_prior import draw_random_style
from tqdm import tqdm
import random
from scripts.transformer_prediction_interface import get_params_from_config, load_model_workflow
"""
===============================
PUBLIC FUNCTIONS FOR EVALUATION
===============================
"""
def eval_model_range(i_range, *args, **kwargs):
for i in i_range:
eval_model(i, *args, **kwargs)
def eval_model(i, e, valid_datasets, test_datasets, train_datasets, eval_positions_valid, eval_positions_test,
bptt_valid,
bptt_test, add_name, base_path, device='cpu', eval_addition='', **extra_tuning_args):
"""
Differentiable model evaliation workflow. Evaluates and saves results to disk.
:param i:
:param e:
:param valid_datasets:
:param test_datasets:
:param train_datasets:
:param eval_positions_valid:
:param eval_positions_test:
:param bptt_valid:
:param bptt_test:
:param add_name:
:param base_path:
:param device:
:param eval_addition:
:param extra_tuning_args:
:return:
"""
model, c, results_file = load_model_workflow(i, e, add_name, base_path, device, eval_addition)
params = {'bptt': bptt_valid
, 'bptt_final': bptt_test
, 'eval_positions': eval_positions_valid
, 'eval_positions_test': eval_positions_test
, 'valid_datasets': valid_datasets
, 'test_datasets': test_datasets
, 'train_datasets': train_datasets
, 'verbose': True
, 'device': device
}
params.update(get_params_from_config(c))
start = time.time()
metrics, metrics_valid, style, temperature, optimization_route = evaluate_differentiable_model(model, **params,
**extra_tuning_args)
print('Evaluation time: ', time.time() - start)
print(results_file)
r = [c.copy(), metrics, metrics_valid, style.to('cpu'), temperature.to('cpu'), optimization_route]
with open(results_file, 'wb') as output:
del r[0]['num_features_used']
del r[0]['categorical_features_sampler']
pickle.dump(r, output)
_, _, _, style, temperature, _ = r
return r, model
"""
===============================
INTERNAL HELPER FUNCTIONS
===============================
"""
def evaluate_differentiable_model(model
, valid_datasets
, test_datasets
, train_datasets
, N_draws=100
, N_grad_steps=10
, eval_positions=None
, eval_positions_test=None
, bptt=100
, bptt_final=200
, style=None
, n_parallel_configurations=1
, device='cpu'
, selection_metric='auc'
, final_splits=[1, 2, 3, 4, 5]
, N_ensemble_configurations_list=[1, 5, 10, 20, 50, 100]
, **kwargs):
"""
Evaluation function for diffable model evaluation. Returns a list of results.
:param model:
:param valid_datasets:
:param test_datasets:
:param train_datasets:
:param N_draws:
:param N_grad_steps:
:param eval_positions:
:param eval_positions_test:
:param bptt:
:param bptt_final:
:param style:
:param n_parallel_configurations:
:param device:
:param selection_metric:
:param final_splits:
:param N_ensemble_configurations_list:
:param kwargs:
:return:
"""
torch.manual_seed(0)
np.random.seed(0)
random.seed(0)
diffable_metric = tabular_metrics.cross_entropy
evaluation_metric = tabular_metrics.auc_metric
if selection_metric in ('auc', 'roc'):
selection_metric_min_max = 'max'
selection_metric = tabular_metrics.auc_metric
evaluation_metric = selection_metric
elif selection_metric in ('ce', 'selection_metric'):
selection_metric_min_max = 'min'
selection_metric = tabular_metrics.cross_entropy
evaluation_metric = selection_metric
print('Diffable metric', diffable_metric, ' Selection metric', selection_metric, ' Evaluation metric',
evaluation_metric)
print('N PARALLEL CONFIGURATIONS', n_parallel_configurations)
print('eval_positions', eval_positions)
def evaluate_valid(style, softmax_temperature, results, results_tracked):
result_valid = eval_step(valid_datasets, style, softmax_temperature=softmax_temperature,
return_tensor=False, inference_mode=True, selection_metric=selection_metric,
evaluation_metric=evaluation_metric, eval_positions=eval_positions, bptt=bptt, model=model[2])
result_valid = [float(result_valid[f'mean_select_at_{pos}']) for pos in eval_positions]
results += [result_valid]
results_tracked += [np.nanmean(result_valid)]
model[2].to(device)
model[2].eval()
results_on_valid, results_on_valid_tracked = [], []
best_style, best_softmax_temperature = style, torch.cat(
[torch.tensor([0.0]).to(device) for n in range(0, n_parallel_configurations)], 0)
optimization_routes = []
best_style = torch.cat([draw_random_style(model[3], device).detach() for n in range(0, n_parallel_configurations)],
0)
best_softmax_temperature = torch.cat([torch.tensor([0.0]).to(device) for n in range(0, n_parallel_configurations)],
0)
for _ in tqdm(range(0, N_draws), desc='Iterate over Optimization initializations'): # Evaluates N hparam draws
style = torch.cat([draw_random_style(model[3], device).detach() for n in range(0, n_parallel_configurations)],
0)
softmax_temperature = torch.cat([torch.tensor([0.0]).to(device) for n in range(0, n_parallel_configurations)],
0)
evaluate_valid(style, softmax_temperature, results_on_valid, results_on_valid_tracked)
print(f'Draw --> Valid Selection metric: {results_on_valid[-1]}')
if N_grad_steps > 0:
gradient_optimize_result = gradient_optimize_style(model, style, N_grad_steps
, softmax_temperature=softmax_temperature
, model=model[2]
, train_datasets=train_datasets
, valid_datasets=valid_datasets
, selection_metric_min_max=selection_metric_min_max
, **kwargs)
optimization_routes += [gradient_optimize_result['optimization_route']]
evaluate_valid(gradient_optimize_result['best_style']
, gradient_optimize_result['best_temperature']
, results_on_valid, results_on_valid_tracked)
print(f'After diff --> Valid Selection metric: {results_on_valid[-1]}')
if selection_metric_min_max == 'min':
is_best = (results_on_valid_tracked[-1] <= min(results_on_valid_tracked))
else:
is_best = (results_on_valid_tracked[-1] >= max(results_on_valid_tracked))
if is_best or best_style is None:
best_style = gradient_optimize_result['best_style'].clone()
best_softmax_temperature = gradient_optimize_result['best_temperature'].clone()
torch.cuda.empty_cache()
def final_evaluation():
print('Running eval dataset with final params (no gradients)..')
print(best_style, best_softmax_temperature)
result_test = []
for N_ensemble_configurations in N_ensemble_configurations_list:
print(f'Running with {N_ensemble_configurations} ensemble_configurations')
kwargs['N_ensemble_configurations'] = N_ensemble_configurations
splits = []
for split in final_splits:
splits += [eval_step(test_datasets, best_style, softmax_temperature=best_softmax_temperature
, return_tensor=False, eval_positions=eval_positions_test,
bptt=bptt_final, inference_mode=True, split_number=split, model=model[2]
, selection_metric=selection_metric, evaluation_metric=evaluation_metric)]
result_test += [splits]
print('Running valid dataset with final params (no gradients)..')
result_valid = eval_step(valid_datasets, best_style, softmax_temperature=best_softmax_temperature
, return_tensor=False, eval_positions=eval_positions_test,
bptt=bptt_final, inference_mode=True, model=model[2]
, selection_metric=selection_metric, evaluation_metric=evaluation_metric)
return result_test, result_valid
result_test, result_valid = final_evaluation()
return result_test, result_valid, best_style, best_softmax_temperature, optimization_routes
def eval_step(ds, used_style, selection_metric, evaluation_metric, eval_positions, return_tensor=True, **kwargs):
def step():
return evaluate(datasets=ds,
method='transformer'
, overwrite=True
, style=used_style
, eval_positions=eval_positions
, metric_used=selection_metric
, save=False
, path_interfix=None
, base_path=None
, verbose=True
, **kwargs)
if return_tensor:
r = step()
else:
with torch.no_grad():
r = step()
calculate_score_per_method(selection_metric, 'select', r, ds, eval_positions, aggregator='mean')
calculate_score_per_method(evaluation_metric, 'eval', r, ds, eval_positions, aggregator='mean')
return r
def gradient_optimize_style(model, init_style, steps, softmax_temperature, train_datasets, valid_datasets, learning_rate=0.03, optimize_all=False,
limit_style=True, N_datasets_sampled=90, optimize_softmax_temperature=True, selection_metric_min_max='max', **kwargs):
"""
Uses gradient based methods to optimize 'style' on the 'train_datasets' and uses stopping with 'valid_datasets'.
:param model:
:param init_style:
:param steps:
:param learning_rate:
:param softmax_temperature:
:param train_datasets:
:param valid_datasets:
:param optimize_all:
:param limit_style:
:param N_datasets_sampled:
:param optimize_softmax_temperature:
:param selection_metric_min_max:
:param kwargs:
:return:
"""
grad_style = torch.nn.Parameter(init_style.detach(), requires_grad=True)
best_style, best_temperature, best_selection_metric, best_diffable_metric = grad_style.detach(), softmax_temperature.detach(), None, None
softmax_temperature = torch.nn.Parameter(softmax_temperature.detach(), requires_grad=optimize_softmax_temperature)
variables_to_optimize = model[2].parameters() if optimize_all else [grad_style, softmax_temperature]
optimizer = torch.optim.Adam(variables_to_optimize, lr=learning_rate)
optimization_route_selection, optimization_route_diffable = [], []
optimization_route_selection_valid, optimization_route_diffable_valid = [], []
def eval_opt(ds, return_tensor=True, inference_mode=False):
result = eval_step(ds, grad_style, softmax_temperature=softmax_temperature, return_tensor=return_tensor
, inference_mode=inference_mode, model=model[2], **kwargs)
diffable_metric = result['mean_metric']
selection_metric = result['mean_select']
return diffable_metric, selection_metric
def eval_all_datasets(datasets, propagate=True):
selection_metrics_this_step, diffable_metrics_this_step = [], []
for ds in datasets:
diffable_metric_train, selection_metric_train = eval_opt([ds], inference_mode=(not propagate))
if not torch.isnan(diffable_metric_train).any():
if propagate and diffable_metric_train.requires_grad == True:
diffable_metric_train.backward()
selection_metrics_this_step += [selection_metric_train]
diffable_metrics_this_step += [float(diffable_metric_train.detach().cpu().numpy())]
diffable_metric_train = np.nanmean(diffable_metrics_this_step)
selection_metric_train = np.nanmean(selection_metrics_this_step)
return diffable_metric_train, selection_metric_train
for t in tqdm(range(steps), desc='Iterate over Optimization steps'):
optimizer.zero_grad()
# Select subset of datasets
random.seed(t)
train_datasets_ = random.sample(train_datasets, N_datasets_sampled)
# Get score on train
diffable_metric_train, selection_metric_train = eval_all_datasets(train_datasets_, propagate=True)
optimization_route_selection += [float(selection_metric_train)]
optimization_route_diffable += [float(diffable_metric_train)]
# Get score on valid
diffable_metric_valid, selection_metric_valid = eval_all_datasets(valid_datasets, propagate=False)
optimization_route_selection_valid += [float(selection_metric_valid)]
optimization_route_diffable_valid += [float(diffable_metric_valid)]
is_best = (selection_metric_min_max == 'min' and best_selection_metric > selection_metric_valid)
is_best = is_best or (selection_metric_min_max == 'max' and best_selection_metric < selection_metric_valid)
if (best_selection_metric is None) or (not np.isnan(selection_metric_valid) and is_best):
print('New best', best_selection_metric, selection_metric_valid)
best_style = grad_style.detach().clone()
best_temperature = softmax_temperature.detach().clone()
best_selection_metric, best_diffable_metric = selection_metric_valid, diffable_metric_valid
optimizer.step()
if limit_style:
grad_style = grad_style.detach().clamp(-1.74, 1.74)
print(f'Valid: Diffable metric={diffable_metric_valid} Selection metric={selection_metric_valid};' +
f'Train: Diffable metric={diffable_metric_train} Selection metric={selection_metric_train}')
print(f'Return best:{best_style} {best_selection_metric}')
return {'best_style': best_style, 'best_temperature': best_temperature
, 'optimization_route': {'select': optimization_route_selection, 'loss': optimization_route_diffable,
'test_select': optimization_route_selection_valid, 'test_loss': optimization_route_diffable_valid}} |