File size: 6,885 Bytes
e487255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This notebook shows how to use TabPFN for tabular prediction with a scikit learn wrapper.\n",
    "\n",
    "classifier = TabPFNClassifier(device='cpu')\n",
    "classifier.fit(train_xs, train_ys)\n",
    "prediction_ = classifier.predict(test_xs)\n",
    "\n",
    "The fit function does not perform any computations, but only saves the training data. Computations are only done at inference time, when calling predict.\n",
    "Note that the presaved models were trained for up to 100 features, 10 classes and 1000 samples. While the model does not have a hard bound on the number of samples, the features and classes are restricted and larger sizes lead to an error."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "### Setup"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%load_ext autoreload\n",
    "\n",
    "%autoreload 2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import time\n",
    "import torch\n",
    "import numpy as np\n",
    "import os\n",
    "import random\n",
    "\n",
    "from model_builder import get_model, get_default_spec, save_model, load_model\n",
    "from scripts.transformer_prediction_interface import transformer_predict, get_params_from_config, TabPFNClassifier\n",
    "\n",
    "from datasets import load_openml_list, open_cc_dids, open_cc_valid_dids\n",
    "\n",
    "from scripts import tabular_metrics"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "base_path = '.'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "### Load datasets"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "jupyter": {
     "outputs_hidden": true
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "max_samples = 10000\n",
    "bptt = 10000\n",
    "\n",
    "cc_test_datasets_multiclass, cc_test_datasets_multiclass_df = load_openml_list(open_cc_dids, multiclass=True, shuffled=True, filter_for_nan=False, max_samples = max_samples, num_feats=100, return_capped=True)\n",
    "cc_valid_datasets_multiclass, cc_valid_datasets_multiclass_df = load_openml_list(open_cc_valid_dids, multiclass=True, shuffled=True, filter_for_nan=False, max_samples = max_samples, num_feats=100, return_capped=True)\n",
    "\n",
    "# Loading longer OpenML Datasets for generalization experiments (optional)\n",
    "# test_datasets_multiclass, test_datasets_multiclass_df = load_openml_list(test_dids_classification, multiclass=True, shuffled=True, filter_for_nan=False, max_samples = 10000, num_feats=100, return_capped=True)\n",
    "\n",
    "random.seed(0)\n",
    "random.shuffle(cc_valid_datasets_multiclass)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from datasets import get_openml_classification"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "dataset = openml.datasets.get_dataset(31)\n",
    "X, y, categorical_indicator, attribute_names = dataset.get_data(\n",
    "        dataset_format=\"array\", target=dataset.default_target_attribute\n",
    "    )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_datasets(selector, task_type, suite='cc'):\n",
    "    if task_type == 'binary':\n",
    "        ds = valid_datasets_binary if selector == 'valid' else test_datasets_binary\n",
    "    else:\n",
    "        if suite == 'openml':\n",
    "            ds = valid_datasets_multiclass if selector == 'valid' else test_datasets_multiclass\n",
    "        elif suite == 'cc':\n",
    "            ds = cc_valid_datasets_multiclass if selector == 'valid' else cc_test_datasets_multiclass\n",
    "        else:\n",
    "            raise Exception(\"Unknown suite\")\n",
    "    return ds"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model_string, longer, task_type = '', 1, 'multiclass'\n",
    "eval_positions = [1000]\n",
    "bptt = 2000\n",
    "    \n",
    "test_datasets, valid_datasets = get_datasets('test', task_type, suite='cc'), get_datasets('valid', task_type, suite='cc')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "jp-MarkdownHeadingCollapsed": true,
    "tags": []
   },
   "source": [
    "### Select a dataset for prediction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "[(i, test_datasets[i][0]) for i in range(len(test_datasets))]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "evaluation_dataset_index = 4 # Index of the dataset to predict\n",
    "ds = test_datasets[evaluation_dataset_index]\n",
    "print(f'Evaluation dataset name: {ds[0]} shape {ds[1].shape}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "xs, ys = ds[1].clone(), ds[2].clone()\n",
    "eval_position = xs.shape[0] // 2\n",
    "train_xs, train_ys = xs[0:eval_position], ys[0:eval_position]\n",
    "test_xs, test_ys = xs[eval_position:], ys[eval_position:]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "tags": []
   },
   "source": [
    "### Predict using a Fitted and Tuned Model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "classifier = TabPFNClassifier(device='cpu')\n",
    "classifier.fit(train_xs, train_ys)\n",
    "prediction_ = classifier.predict_proba(test_xs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "roc, ce = tabular_metrics.auc_metric(test_ys, prediction_), tabular_metrics.cross_entropy(test_ys, prediction_)\n",
    "'AUC', float(roc), 'Cross Entropy', float(ce)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}