File size: 16,574 Bytes
fb0ce27
 
 
 
 
 
 
 
 
 
 
f91a345
fb0ce27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180adf5
fb0ce27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91a345
fb0ce27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91a345
 
 
 
 
fb0ce27
f91a345
fb0ce27
 
 
 
 
 
 
96c79d5
1739422
a6aefc2
96c79d5
fb0ce27
daec56a
fb0ce27
 
a6aefc2
fb0ce27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb98142
fb0ce27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6aefc2
fb0ce27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ef322c
 
 
 
fb0ce27
 
 
 
 
 
 
046b050
 
fb0ce27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdc845f
fb0ce27
fdc845f
fb0ce27
fdc845f
 
fb0ce27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb98142
fb0ce27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import logging
import os
import sys
from contextlib import contextmanager, redirect_stdout
from io import StringIO
from typing import Callable, Generator, Optional, List, Dict
import requests
import json
from consts import AUTO_SEARCH_KEYWORD, SEARCH_TOOL_INSTRUCTION, RELATED_QUESTIONS_TEMPLATE_SEARCH, SEARCH_TOOL_INSTRUCTION, RAG_TEMPLATE, GOOGLE_SEARCH_ENDPOINT, DEFAULT_SEARCH_ENGINE_TIMEOUT, RELATED_QUESTIONS_TEMPLATE_NO_SEARCH
import re
import asyncio
import random

import streamlit as st
import yaml

current_dir = os.path.dirname(os.path.abspath(__file__))
kit_dir = os.path.abspath(os.path.join(current_dir, '..'))
repo_dir = os.path.abspath(os.path.join(kit_dir, '..'))

sys.path.append(kit_dir)
sys.path.append(repo_dir)


from visual_env_utils import are_credentials_set, env_input_fields, initialize_env_variables, save_credentials

logging.basicConfig(level=logging.INFO)
GOOGLE_API_KEY = st.secrets["google_api_key"]
GOOGLE_CX = st.secrets["google_cx"]
BACKUP_KEYS = [st.secrets["backup_key_1"], st.secrets["backup_key_2"], st.secrets["backup_key_3"], st.secrets["backup_key_4"], st.secrets["backup_key_5"]]

CONFIG_PATH = os.path.join(current_dir, "config.yaml")

USER_AGENTS = [
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Safari/605.1.15",
]

def load_config():
    with open(CONFIG_PATH, 'r') as yaml_file:
        return yaml.safe_load(yaml_file)


config = load_config()
prod_mode = config.get('prod_mode', False)
additional_env_vars = config.get('additional_env_vars', None)

@contextmanager
def st_capture(output_func: Callable[[str], None]) -> Generator:
    """
    context manager to catch stdout and send it to an output streamlit element
    Args:
        output_func (function to write terminal output in
    Yields:
        Generator:
    """
    with StringIO() as stdout, redirect_stdout(stdout):
        old_write = stdout.write

        def new_write(string: str) -> int:
            ret = old_write(string)
            output_func(stdout.getvalue())
            return ret

        stdout.write = new_write  # type: ignore
        yield

async def run_samba_api_inference(query, system_prompt = None, ignore_context=False, max_tokens_to_generate=None, num_seconds_to_sleep=1, over_ride_key=None):
    # First construct messages
    messages = []
    if system_prompt is not None:
        messages.append({"role": "system", "content": system_prompt})

    if not ignore_context:
        for ques, ans in zip(
            st.session_state.chat_history[::3],
            st.session_state.chat_history[1::3],
        ):
            messages.append({"role": "user", "content": ques})
            messages.append({"role": "assistant", "content": ans})
    messages.append({"role": "user", "content": query})

    # Create payloads
    payload = {
        "messages": messages,
        "model": config.get("model")
    }
    if max_tokens_to_generate is not None:
        payload["max_tokens"] = max_tokens_to_generate

    if over_ride_key is None:
        api_key = st.session_state.SAMBANOVA_API_KEY
    else:
        api_key = over_ride_key
    headers = {
        "Authorization": f"Basic {api_key}",
        "Content-Type": "application/json"
    }

    try:
        post_response = await asyncio.get_event_loop().run_in_executor(None, lambda: requests.post(config.get("url"), json=payload, headers=headers, stream=True))
        post_response.raise_for_status()
    except requests.exceptions.HTTPError as e:
        if post_response.status_code in {401, 503}:
            st.info(f"Invalid Key! Please make sure you have a valid SambaCloud key from https://cloud.sambanova.ai/.")
            return "Invalid Key! Please make sure you have a valid SambaCloud key from https://cloud.sambanova.ai/."
        if post_response.status_code in {429, 504}:
            await asyncio.sleep(num_seconds_to_sleep)
            return await run_samba_api_inference(query, over_ride_key=random.choice(BACKUP_KEYS))  # Retry the request
        else:
            print(f"Request failed with status code: {post_response.status_code}. Error: {e}")
            return "Invalid Key! Please make sure you have a valid SambaCloud key from https://cloud.sambanova.ai/."

    response_data = json.loads(post_response.text)

    return response_data["choices"][0]["message"]["content"]

def extract_query(text):
    # Regular expression to capture the query within the quotes
    match = re.search(r'query="(.*?)"', text)
    
    # If a match is found, return the query, otherwise return None
    if match:
        return match.group(1)
    return None

def extract_text_between_brackets(text):
    # Using regular expressions to find all text between brackets
    matches = re.findall(r'\[(.*?)\]', text)
    return matches

def search_with_google(query: str):
    """
    Search with google and return the contexts.
    """
    params = {
        "key": GOOGLE_API_KEY,
        "cx": GOOGLE_CX,
        "q": query,
        "num": 5,
    }
    response = requests.get(
        GOOGLE_SEARCH_ENDPOINT, params=params, timeout=DEFAULT_SEARCH_ENGINE_TIMEOUT
    )

    if not response.ok:
        raise Exception(response.status_code, "Search engine error.")
    json_content = response.json()

    contexts = json_content["items"][:5]

    return contexts

async def get_related_questions(query, contexts = None):
    if contexts:
        related_question_system_prompt = RELATED_QUESTIONS_TEMPLATE_SEARCH.format(
            context="\n\n".join([c["snippet"] for c in contexts])
        )
    else:
        # When no search is performed, use a generic prompt
        related_question_system_prompt = RELATED_QUESTIONS_TEMPLATE_SEARCH

    related_questions_raw = await run_samba_api_inference(query, related_question_system_prompt)

    try:
        return json.loads(related_questions_raw)  
    except:
        try:
            extracted_related_questions = extract_text_between_brackets(related_questions_raw)
            return json.loads(extracted_related_questions)
        except:
            return []

def process_citations(response: str, search_result_contexts: List[Dict]) -> str:
    """
    Process citations in the response and replace them with numbered icons.
    
    Args:
        response (str): The original response with citations.
        search_result_contexts (List[Dict]): The search results with context information.
    
    Returns:
        str: The processed response with numbered icons for citations.
    """
    citations = re.findall(r'\[citation:(\d+)\]', response)
    
    for i, citation in enumerate(citations, 1):
        response = response.replace(f'[citation:{citation}]', f'<sup>[{i}]</sup>')
    
    return response

def generate_citation_links(search_result_contexts: List[Dict]) -> str:
    """
    Generate HTML for citation links.
    
    Args:
        search_result_contexts (List[Dict]): The search results with context information.
    
    Returns:
        str: HTML string with numbered citation links.
    """
    citation_links = []
    for i, context in enumerate(search_result_contexts, 1):
        title = context.get('title', 'No title')
        link = context.get('link', '#')
        citation_links.append(f'<p>[{i}] <a href="{link}" target="_blank">{title}</a></p>')
    
    return ''.join(citation_links)

        
async def run_auto_search_pipe(query):
    full_context_answer = asyncio.create_task(run_samba_api_inference(query))
    related_questions_no_search = asyncio.create_task(get_related_questions(query))

    # First call Llama3.1 8B with special system prompt for auto search
    with st.spinner('Checking if web search is needed...'):
        auto_search_result = await run_samba_api_inference(query, SEARCH_TOOL_INSTRUCTION, True, max_tokens_to_generate=100)

    # If Llama3.1 8B returns a search query then run search pipeline
    if AUTO_SEARCH_KEYWORD in auto_search_result:
        st.session_state.search_performed = True
        # search
        with st.spinner('Searching the internet...'):
            search_result_contexts = search_with_google(extract_query(auto_search_result))

        # RAG response
        with st.spinner('Generating response based on web search...'):
            rag_system_prompt = RAG_TEMPLATE.format(
                context="\n\n".join(
                    [f"[[citation:{i+1}]] {c['snippet']}" for i, c in enumerate(search_result_contexts)]
                )
            )

            model_response = asyncio.create_task(run_samba_api_inference(query, rag_system_prompt))
            related_questions = asyncio.create_task(get_related_questions(query, search_result_contexts))
            # Process citations and generate links
            citation_links = generate_citation_links(search_result_contexts)
            
            model_response_complete = await model_response
            processed_response = process_citations(model_response_complete, search_result_contexts)
            related_questions_complete = await related_questions


        return processed_response, citation_links, related_questions_complete
    
    # If Llama3.1 8B returns an answer directly, then please query Llama 405B to get the best possible answer
    else:
        st.session_state.search_performed = False
        result = await full_context_answer
        related_questions = await related_questions_no_search
        return result, "", related_questions


def handle_userinput(user_question: Optional[str]) -> None:
    """
    Handle user input and generate a response, also update chat UI in streamlit app
    Args:
        user_question (str): The user's question or input.
    """
    if user_question:
        # Clear any existing related question buttons
        if 'related_questions' in st.session_state:
            st.session_state.related_questions = []

        async def run_search():
            return await run_auto_search_pipe(user_question)
        
        response, citation_links, related_questions = asyncio.run(run_search())
        if st.session_state.search_performed:
            search_or_not_text = "🔍 Web search was performed for this query."
        else:
            search_or_not_text = "📚 This response was generated from the model's knowledge."

        st.session_state.chat_history.append(user_question)
        st.session_state.chat_history.append((response, citation_links))
        st.session_state.chat_history.append(search_or_not_text)

        # Store related questions in session state
        st.session_state.related_questions = related_questions

    for ques, ans, search_or_not_text in zip(
        st.session_state.chat_history[::3],
        st.session_state.chat_history[1::3],
        st.session_state.chat_history[2::3],
    ):
        with st.chat_message('user'):
            st.write(f'{ques}')
    
        with st.chat_message(
            'ai',
            avatar='https://sambanova.ai/hubfs/logotype_sambanova_orange.png',
        ):
            st.markdown(f'{ans[0]}', unsafe_allow_html=True)
            if ans[1]:
                st.markdown("### Sources", unsafe_allow_html=True)
                st.markdown(ans[1], unsafe_allow_html=True)
            st.info(search_or_not_text)
    if len(st.session_state.related_questions) > 0:
        st.markdown("### Related Questions")
        for question in st.session_state.related_questions:
            if st.button(question):
                setChatInputValue(question)

def setChatInputValue(chat_input_value: str) -> None:
    js = f"""
    <script>
        function insertText(dummy_var_to_force_repeat_execution) {{
            var chatInput = parent.document.querySelector('textarea[data-testid="stChatInputTextArea"]');
            var nativeInputValueSetter = Object.getOwnPropertyDescriptor(window.HTMLTextAreaElement.prototype, "value").set;
            nativeInputValueSetter.call(chatInput, "{chat_input_value}");
            var event = new Event('input', {{ bubbles: true}});
            chatInput.dispatchEvent(event);
        }}
        insertText(3);
    </script>
    """
    st.components.v1.html(js)

def main() -> None:
    st.set_page_config(
        page_title='Auto Web Search Demo',
        page_icon='https://sambanova.ai/hubfs/logotype_sambanova_orange.png',
    )


    initialize_env_variables(prod_mode, additional_env_vars)

    if 'input_disabled' not in st.session_state:
        if 'SAMBANOVA_API_KEY' in st.session_state:
            st.session_state.input_disabled = False
        else:
            st.session_state.input_disabled = True
    if 'chat_history' not in st.session_state:
        st.session_state.chat_history = []
    if 'search_performed' not in st.session_state:
        st.session_state.search_performed = False
    if 'related_questions' not in st.session_state:
        st.session_state.related_questions = [] 

    st.title(' Auto Web Search')
    st.subheader('Powered by :orange[SambaNova Cloud] and Llama405B')

    with st.sidebar:
        st.title('Get your :orange[SambaNova Cloud] API key [here](https://cloud.sambanova.ai/apis)')

        if not are_credentials_set(additional_env_vars):
            api_key, additional_vars = env_input_fields(additional_env_vars)
            if st.button('Save Credentials'):
                message = save_credentials(api_key, additional_vars, prod_mode)
                st.session_state.input_disabled = False
                st.success(message)
                st.rerun()

        else:
            st.success('Credentials are set')
            if st.button('Clear Credentials'):
                save_credentials('', {var: '' for var in (additional_env_vars or [])}, prod_mode)
                st.session_state.input_disabled = True
                st.rerun()


        if are_credentials_set(additional_env_vars):
            with st.expander('**Example Queries With Search**', expanded=True):
                if st.button('Who won Wimbledon this year?'):
                    setChatInputValue(
                        'Who won Wimbledon this year?'
                    )
                if st.button('SNP 500 stock market moves'):
                    setChatInputValue('SNP 500 stock market moves')
                if st.button('What is the weather in Palo Alto?'):
                    setChatInputValue(
                        'What is the weather in Palo Alto?'
                    )
            with st.expander('**Example Queries No Search**', expanded=True):
                if st.button('write a short poem following a specific pattern: the first letter of every word should spell out the name of a country.'):
                    setChatInputValue(
                        'write a short poem following a specific pattern: the first letter of every word should spell out the name of a country.'
                    )
                if st.button('Write a python program to find the longest root to leaf path in a tree, and some test cases for it.'):
                    setChatInputValue('Write a python program to find the longest root to leaf path in a tree, and some test cases for it.')

            st.markdown('**Reset chat**')
            st.markdown('**Note:** Resetting the chat will clear all interactions history')
            if st.button('Reset conversation'):
                st.session_state.chat_history = []
                st.session_state.sources_history = []
                if 'related_questions' in st.session_state:
                    st.session_state.related_questions = []
                st.toast('Interactions reset. The next response will clear the history on the screen')

        # Add a footer with the GitHub citation
        footer_html = """
        <style>
        .footer {
            position: fixed;
            right: 10px;
            bottom: 10px;
            width: auto;
            background-color: transparent;
            color: grey;
            text-align: right;
            padding: 10px;
            font-size: 16px;
        }
        </style>
        <div class="footer">
            Inspired by: <a href="https://github.com/leptonai/search_with_lepton" target="_blank">search_with_lepton</a>
        </div>
        """
        st.markdown(footer_html, unsafe_allow_html=True)

    user_question = st.chat_input('Ask something', disabled=st.session_state.input_disabled, key='TheChatInput')
    handle_userinput(user_question)

    

if __name__ == '__main__':
    main()