File size: 16,574 Bytes
fb0ce27 f91a345 fb0ce27 180adf5 fb0ce27 f91a345 fb0ce27 f91a345 fb0ce27 f91a345 fb0ce27 96c79d5 1739422 a6aefc2 96c79d5 fb0ce27 daec56a fb0ce27 a6aefc2 fb0ce27 fb98142 fb0ce27 a6aefc2 fb0ce27 7ef322c fb0ce27 046b050 fb0ce27 fdc845f fb0ce27 fdc845f fb0ce27 fdc845f fb0ce27 fb98142 fb0ce27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
import logging
import os
import sys
from contextlib import contextmanager, redirect_stdout
from io import StringIO
from typing import Callable, Generator, Optional, List, Dict
import requests
import json
from consts import AUTO_SEARCH_KEYWORD, SEARCH_TOOL_INSTRUCTION, RELATED_QUESTIONS_TEMPLATE_SEARCH, SEARCH_TOOL_INSTRUCTION, RAG_TEMPLATE, GOOGLE_SEARCH_ENDPOINT, DEFAULT_SEARCH_ENGINE_TIMEOUT, RELATED_QUESTIONS_TEMPLATE_NO_SEARCH
import re
import asyncio
import random
import streamlit as st
import yaml
current_dir = os.path.dirname(os.path.abspath(__file__))
kit_dir = os.path.abspath(os.path.join(current_dir, '..'))
repo_dir = os.path.abspath(os.path.join(kit_dir, '..'))
sys.path.append(kit_dir)
sys.path.append(repo_dir)
from visual_env_utils import are_credentials_set, env_input_fields, initialize_env_variables, save_credentials
logging.basicConfig(level=logging.INFO)
GOOGLE_API_KEY = st.secrets["google_api_key"]
GOOGLE_CX = st.secrets["google_cx"]
BACKUP_KEYS = [st.secrets["backup_key_1"], st.secrets["backup_key_2"], st.secrets["backup_key_3"], st.secrets["backup_key_4"], st.secrets["backup_key_5"]]
CONFIG_PATH = os.path.join(current_dir, "config.yaml")
USER_AGENTS = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Safari/605.1.15",
]
def load_config():
with open(CONFIG_PATH, 'r') as yaml_file:
return yaml.safe_load(yaml_file)
config = load_config()
prod_mode = config.get('prod_mode', False)
additional_env_vars = config.get('additional_env_vars', None)
@contextmanager
def st_capture(output_func: Callable[[str], None]) -> Generator:
"""
context manager to catch stdout and send it to an output streamlit element
Args:
output_func (function to write terminal output in
Yields:
Generator:
"""
with StringIO() as stdout, redirect_stdout(stdout):
old_write = stdout.write
def new_write(string: str) -> int:
ret = old_write(string)
output_func(stdout.getvalue())
return ret
stdout.write = new_write # type: ignore
yield
async def run_samba_api_inference(query, system_prompt = None, ignore_context=False, max_tokens_to_generate=None, num_seconds_to_sleep=1, over_ride_key=None):
# First construct messages
messages = []
if system_prompt is not None:
messages.append({"role": "system", "content": system_prompt})
if not ignore_context:
for ques, ans in zip(
st.session_state.chat_history[::3],
st.session_state.chat_history[1::3],
):
messages.append({"role": "user", "content": ques})
messages.append({"role": "assistant", "content": ans})
messages.append({"role": "user", "content": query})
# Create payloads
payload = {
"messages": messages,
"model": config.get("model")
}
if max_tokens_to_generate is not None:
payload["max_tokens"] = max_tokens_to_generate
if over_ride_key is None:
api_key = st.session_state.SAMBANOVA_API_KEY
else:
api_key = over_ride_key
headers = {
"Authorization": f"Basic {api_key}",
"Content-Type": "application/json"
}
try:
post_response = await asyncio.get_event_loop().run_in_executor(None, lambda: requests.post(config.get("url"), json=payload, headers=headers, stream=True))
post_response.raise_for_status()
except requests.exceptions.HTTPError as e:
if post_response.status_code in {401, 503}:
st.info(f"Invalid Key! Please make sure you have a valid SambaCloud key from https://cloud.sambanova.ai/.")
return "Invalid Key! Please make sure you have a valid SambaCloud key from https://cloud.sambanova.ai/."
if post_response.status_code in {429, 504}:
await asyncio.sleep(num_seconds_to_sleep)
return await run_samba_api_inference(query, over_ride_key=random.choice(BACKUP_KEYS)) # Retry the request
else:
print(f"Request failed with status code: {post_response.status_code}. Error: {e}")
return "Invalid Key! Please make sure you have a valid SambaCloud key from https://cloud.sambanova.ai/."
response_data = json.loads(post_response.text)
return response_data["choices"][0]["message"]["content"]
def extract_query(text):
# Regular expression to capture the query within the quotes
match = re.search(r'query="(.*?)"', text)
# If a match is found, return the query, otherwise return None
if match:
return match.group(1)
return None
def extract_text_between_brackets(text):
# Using regular expressions to find all text between brackets
matches = re.findall(r'\[(.*?)\]', text)
return matches
def search_with_google(query: str):
"""
Search with google and return the contexts.
"""
params = {
"key": GOOGLE_API_KEY,
"cx": GOOGLE_CX,
"q": query,
"num": 5,
}
response = requests.get(
GOOGLE_SEARCH_ENDPOINT, params=params, timeout=DEFAULT_SEARCH_ENGINE_TIMEOUT
)
if not response.ok:
raise Exception(response.status_code, "Search engine error.")
json_content = response.json()
contexts = json_content["items"][:5]
return contexts
async def get_related_questions(query, contexts = None):
if contexts:
related_question_system_prompt = RELATED_QUESTIONS_TEMPLATE_SEARCH.format(
context="\n\n".join([c["snippet"] for c in contexts])
)
else:
# When no search is performed, use a generic prompt
related_question_system_prompt = RELATED_QUESTIONS_TEMPLATE_SEARCH
related_questions_raw = await run_samba_api_inference(query, related_question_system_prompt)
try:
return json.loads(related_questions_raw)
except:
try:
extracted_related_questions = extract_text_between_brackets(related_questions_raw)
return json.loads(extracted_related_questions)
except:
return []
def process_citations(response: str, search_result_contexts: List[Dict]) -> str:
"""
Process citations in the response and replace them with numbered icons.
Args:
response (str): The original response with citations.
search_result_contexts (List[Dict]): The search results with context information.
Returns:
str: The processed response with numbered icons for citations.
"""
citations = re.findall(r'\[citation:(\d+)\]', response)
for i, citation in enumerate(citations, 1):
response = response.replace(f'[citation:{citation}]', f'<sup>[{i}]</sup>')
return response
def generate_citation_links(search_result_contexts: List[Dict]) -> str:
"""
Generate HTML for citation links.
Args:
search_result_contexts (List[Dict]): The search results with context information.
Returns:
str: HTML string with numbered citation links.
"""
citation_links = []
for i, context in enumerate(search_result_contexts, 1):
title = context.get('title', 'No title')
link = context.get('link', '#')
citation_links.append(f'<p>[{i}] <a href="{link}" target="_blank">{title}</a></p>')
return ''.join(citation_links)
async def run_auto_search_pipe(query):
full_context_answer = asyncio.create_task(run_samba_api_inference(query))
related_questions_no_search = asyncio.create_task(get_related_questions(query))
# First call Llama3.1 8B with special system prompt for auto search
with st.spinner('Checking if web search is needed...'):
auto_search_result = await run_samba_api_inference(query, SEARCH_TOOL_INSTRUCTION, True, max_tokens_to_generate=100)
# If Llama3.1 8B returns a search query then run search pipeline
if AUTO_SEARCH_KEYWORD in auto_search_result:
st.session_state.search_performed = True
# search
with st.spinner('Searching the internet...'):
search_result_contexts = search_with_google(extract_query(auto_search_result))
# RAG response
with st.spinner('Generating response based on web search...'):
rag_system_prompt = RAG_TEMPLATE.format(
context="\n\n".join(
[f"[[citation:{i+1}]] {c['snippet']}" for i, c in enumerate(search_result_contexts)]
)
)
model_response = asyncio.create_task(run_samba_api_inference(query, rag_system_prompt))
related_questions = asyncio.create_task(get_related_questions(query, search_result_contexts))
# Process citations and generate links
citation_links = generate_citation_links(search_result_contexts)
model_response_complete = await model_response
processed_response = process_citations(model_response_complete, search_result_contexts)
related_questions_complete = await related_questions
return processed_response, citation_links, related_questions_complete
# If Llama3.1 8B returns an answer directly, then please query Llama 405B to get the best possible answer
else:
st.session_state.search_performed = False
result = await full_context_answer
related_questions = await related_questions_no_search
return result, "", related_questions
def handle_userinput(user_question: Optional[str]) -> None:
"""
Handle user input and generate a response, also update chat UI in streamlit app
Args:
user_question (str): The user's question or input.
"""
if user_question:
# Clear any existing related question buttons
if 'related_questions' in st.session_state:
st.session_state.related_questions = []
async def run_search():
return await run_auto_search_pipe(user_question)
response, citation_links, related_questions = asyncio.run(run_search())
if st.session_state.search_performed:
search_or_not_text = "🔍 Web search was performed for this query."
else:
search_or_not_text = "📚 This response was generated from the model's knowledge."
st.session_state.chat_history.append(user_question)
st.session_state.chat_history.append((response, citation_links))
st.session_state.chat_history.append(search_or_not_text)
# Store related questions in session state
st.session_state.related_questions = related_questions
for ques, ans, search_or_not_text in zip(
st.session_state.chat_history[::3],
st.session_state.chat_history[1::3],
st.session_state.chat_history[2::3],
):
with st.chat_message('user'):
st.write(f'{ques}')
with st.chat_message(
'ai',
avatar='https://sambanova.ai/hubfs/logotype_sambanova_orange.png',
):
st.markdown(f'{ans[0]}', unsafe_allow_html=True)
if ans[1]:
st.markdown("### Sources", unsafe_allow_html=True)
st.markdown(ans[1], unsafe_allow_html=True)
st.info(search_or_not_text)
if len(st.session_state.related_questions) > 0:
st.markdown("### Related Questions")
for question in st.session_state.related_questions:
if st.button(question):
setChatInputValue(question)
def setChatInputValue(chat_input_value: str) -> None:
js = f"""
<script>
function insertText(dummy_var_to_force_repeat_execution) {{
var chatInput = parent.document.querySelector('textarea[data-testid="stChatInputTextArea"]');
var nativeInputValueSetter = Object.getOwnPropertyDescriptor(window.HTMLTextAreaElement.prototype, "value").set;
nativeInputValueSetter.call(chatInput, "{chat_input_value}");
var event = new Event('input', {{ bubbles: true}});
chatInput.dispatchEvent(event);
}}
insertText(3);
</script>
"""
st.components.v1.html(js)
def main() -> None:
st.set_page_config(
page_title='Auto Web Search Demo',
page_icon='https://sambanova.ai/hubfs/logotype_sambanova_orange.png',
)
initialize_env_variables(prod_mode, additional_env_vars)
if 'input_disabled' not in st.session_state:
if 'SAMBANOVA_API_KEY' in st.session_state:
st.session_state.input_disabled = False
else:
st.session_state.input_disabled = True
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'search_performed' not in st.session_state:
st.session_state.search_performed = False
if 'related_questions' not in st.session_state:
st.session_state.related_questions = []
st.title(' Auto Web Search')
st.subheader('Powered by :orange[SambaNova Cloud] and Llama405B')
with st.sidebar:
st.title('Get your :orange[SambaNova Cloud] API key [here](https://cloud.sambanova.ai/apis)')
if not are_credentials_set(additional_env_vars):
api_key, additional_vars = env_input_fields(additional_env_vars)
if st.button('Save Credentials'):
message = save_credentials(api_key, additional_vars, prod_mode)
st.session_state.input_disabled = False
st.success(message)
st.rerun()
else:
st.success('Credentials are set')
if st.button('Clear Credentials'):
save_credentials('', {var: '' for var in (additional_env_vars or [])}, prod_mode)
st.session_state.input_disabled = True
st.rerun()
if are_credentials_set(additional_env_vars):
with st.expander('**Example Queries With Search**', expanded=True):
if st.button('Who won Wimbledon this year?'):
setChatInputValue(
'Who won Wimbledon this year?'
)
if st.button('SNP 500 stock market moves'):
setChatInputValue('SNP 500 stock market moves')
if st.button('What is the weather in Palo Alto?'):
setChatInputValue(
'What is the weather in Palo Alto?'
)
with st.expander('**Example Queries No Search**', expanded=True):
if st.button('write a short poem following a specific pattern: the first letter of every word should spell out the name of a country.'):
setChatInputValue(
'write a short poem following a specific pattern: the first letter of every word should spell out the name of a country.'
)
if st.button('Write a python program to find the longest root to leaf path in a tree, and some test cases for it.'):
setChatInputValue('Write a python program to find the longest root to leaf path in a tree, and some test cases for it.')
st.markdown('**Reset chat**')
st.markdown('**Note:** Resetting the chat will clear all interactions history')
if st.button('Reset conversation'):
st.session_state.chat_history = []
st.session_state.sources_history = []
if 'related_questions' in st.session_state:
st.session_state.related_questions = []
st.toast('Interactions reset. The next response will clear the history on the screen')
# Add a footer with the GitHub citation
footer_html = """
<style>
.footer {
position: fixed;
right: 10px;
bottom: 10px;
width: auto;
background-color: transparent;
color: grey;
text-align: right;
padding: 10px;
font-size: 16px;
}
</style>
<div class="footer">
Inspired by: <a href="https://github.com/leptonai/search_with_lepton" target="_blank">search_with_lepton</a>
</div>
"""
st.markdown(footer_html, unsafe_allow_html=True)
user_question = st.chat_input('Ask something', disabled=st.session_state.input_disabled, key='TheChatInput')
handle_userinput(user_question)
if __name__ == '__main__':
main() |