Spaces:
Running
Running
import gradio as gr | |
import langgraph as lg | |
from typing import TypedDict, Annotated, Sequence | |
from huggingface_hub import InferenceClient, login, list_models | |
from langgraph.prebuilt import ToolNode, tools_condition | |
from langgraph.graph.message import add_messages | |
from langchain.tools import Tool # Updated import | |
from langchain_core.messages import HumanMessage, AIMessage, BaseMessage # Added message types | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint | |
from langgraph.graph import START,END, StateGraph | |
import os | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"] | |
login(token=HUGGINGFACEHUB_API_TOKEN, add_to_git_credential=True) | |
llm = HuggingFaceEndpoint( | |
#repo_id="HuggingFaceH4/zephyr-7b-beta", | |
#repo_id="Qwen/Qwen2.5-Coder-32B-Instruct", | |
#repo_id="deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", | |
#repo_id="deepseek-ai/DeepSeek-Coder-V2-Instruct", | |
repo_id="migtissera/Trinity-2-Codestral-22B", | |
task="text-generation", | |
max_new_tokens=512, | |
do_sample=False, | |
repetition_penalty=1.03, | |
timeout=240, | |
) | |
model = ChatHuggingFace(llm=llm, verbose=True) | |
def get_hub_stats(author: str) -> str: | |
""" | |
You are a helpful chatbot for programmers and data scientists with access to the Hugging Face Hub. | |
Users will want to know the most popular models from Hugging Face. This tool will enable | |
you to fetch the most downloaded model from a specific author on the Hugging Face Hub. | |
""" | |
try: | |
# List models from the specified author, sorted by downloads | |
models = list(list_models(author=author, sort="downloads", direction=-1, limit=1)) | |
if models: | |
model = models[0] | |
return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads." | |
else: | |
return f"No models found for author {author}." | |
except Exception as e: | |
return f"Error fetching models for {author}: {str(e)}" | |
# Initialize the tool | |
hub_stats_tool = Tool.from_function( # Use proper Tool initialization | |
func=get_hub_stats, | |
name="get_hub_stats", | |
description="Fetches popular models from Hugging Face Hub" | |
) | |
def predict(message, history): | |
# Convert Gradio history to LangChain message format | |
history_langchain_format = [] | |
for msg in history: | |
if msg['role'] == "user": | |
history_langchain_format.append(HumanMessage(content=msg['content'])) | |
elif msg['role'] == "assistant": | |
history_langchain_format.append(AIMessage(content=msg['content'])) | |
# Add new user message | |
history_langchain_format.append(HumanMessage(content=message)) | |
# Invoke Alfred agent with full message history | |
response = alfred.invoke( | |
input={"messages": history_langchain_format}, | |
config={"recursion_limit": 100} | |
) | |
# Extract final assistant message | |
return response["messages"][-1].content | |
# setup agents | |
tools = [hub_stats_tool] | |
chat_with_tools = model.bind_tools(tools) | |
# Generate the AgentState and Agent graph | |
class AgentState(TypedDict): | |
messages: Annotated[list[BaseMessage], add_messages] | |
def assistant(state: AgentState): | |
return { | |
"messages": [chat_with_tools.invoke(state["messages"])], | |
} | |
## The graph | |
builder = StateGraph(AgentState) | |
# Define nodes: these do the work | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
# Define edges: these determine how the control flow moves | |
builder.add_edge(START, "assistant") | |
builder.add_conditional_edges( | |
"assistant", | |
# If the latest message requires a tool, route to tools | |
# Otherwise, provide a direct response | |
tools_condition, | |
{"tools": "tools", "end": END} | |
) | |
builder.add_edge("tools", "assistant") | |
alfred = builder.compile() | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
predict, | |
type="messages" | |
) | |
if __name__ == "__main__": | |
demo.launch() | |