Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from typing import TypedDict, Annotated | |
| from huggingface_hub import InferenceClient, login, list_models | |
| from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFacePipeline | |
| from langgraph.graph.message import add_messages | |
| from langchain.docstore.document import Document | |
| from langgraph.prebuilt import ToolNode, tools_condition | |
| from langchain_core.messages import AnyMessage, HumanMessage, AIMessage | |
| from langchain_community.retrievers import BM25Retriever | |
| import os | |
| from langgraph.graph import START, StateGraph | |
| from langchain.tools import Tool | |
| """ | |
| For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
| """ | |
| HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"] | |
| login(token=HUGGINGFACEHUB_API_TOKEN, add_to_git_credential=True) | |
| llm = HuggingFaceEndpoint( | |
| #repo_id="HuggingFaceH4/zephyr-7b-beta", | |
| repo_id="Qwen/Qwen2.5-Coder-32B-Instruct", | |
| task="text-generation", | |
| max_new_tokens=512, | |
| do_sample=False, | |
| repetition_penalty=1.03, | |
| timeout=240, | |
| ) | |
| model = ChatHuggingFace(llm=llm, verbose=True) | |
| def get_hub_stats(author: str) -> str: | |
| """ | |
| You are a helpful chatbot for programmers and data scientists with access to the Hugging Face Hub. | |
| Users will want to know the most popular models from Hugging Face. This tool will enable | |
| you to fetch the most downloaded model from a specific author on the Hugging Face Hub. | |
| """ | |
| try: | |
| # List models from the specified author, sorted by downloads | |
| models = list(list_models(author=author, sort="downloads", direction=-1, limit=1)) | |
| if models: | |
| model = models[0] | |
| return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads." | |
| else: | |
| return f"No models found for author {author}." | |
| except Exception as e: | |
| return f"Error fetching models for {author}: {str(e)}" | |
| # Initialize the tool | |
| hub_stats_tool = Tool( | |
| name="get_hub_stats", | |
| func=get_hub_stats, | |
| description="Fetches the most downloaded model from a specific author on the Hugging Face Hub." | |
| ) | |
| def predict(message, history): | |
| # Convert Gradio history to LangChain message format | |
| history_langchain_format = [] | |
| for msg in history: | |
| if msg['role'] == "user": | |
| history_langchain_format.append(HumanMessage(content=msg['content'])) | |
| elif msg['role'] == "assistant": | |
| history_langchain_format.append(AIMessage(content=msg['content'])) | |
| # Add new user message | |
| history_langchain_format.append(HumanMessage(content=message)) | |
| # Invoke Alfred agent with full message history | |
| response = alfred.invoke( | |
| input={"messages": history_langchain_format}, | |
| config={"recursion_limit": 100} | |
| ) | |
| # Extract final assistant message | |
| return response["messages"][-1].content | |
| # setup agents | |
| tools = [hub_stats_tool] | |
| #tools = [guest_info_tool] | |
| chat_with_tools = model.bind_tools(tools) | |
| # Generate the AgentState and Agent graph | |
| class AgentState(TypedDict): | |
| messages: Annotated[list[AnyMessage], add_messages] | |
| def assistant(state: AgentState): | |
| return { | |
| "messages": [chat_with_tools.invoke(state["messages"])], | |
| } | |
| ## The graph | |
| builder = StateGraph(AgentState) | |
| # Define nodes: these do the work | |
| builder.add_node("assistant", assistant) | |
| builder.add_node("tools", ToolNode(tools)) | |
| # Define edges: these determine how the control flow moves | |
| builder.add_edge(START, "assistant") | |
| builder.add_conditional_edges( | |
| "assistant", | |
| # If the latest message requires a tool, route to tools | |
| # Otherwise, provide a direct response | |
| tools_condition, | |
| ) | |
| builder.add_edge("tools", "assistant") | |
| alfred = builder.compile() | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| """ | |
| demo = gr.ChatInterface( | |
| predict, | |
| type="messages" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |