Samuel Thomas commited on
Commit
043dc9e
·
1 Parent(s): 8e741ad

initial commit

Browse files
Files changed (1) hide show
  1. app.py +102 -42
app.py CHANGED
@@ -1,64 +1,124 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
 
 
 
 
 
 
 
 
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
 
43
  """
44
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
  """
46
  demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
 
 
1
  import gradio as gr
2
+ from typing import TypedDict, Annotated
3
+ from huggingface_hub import InferenceClient, login, list_models
4
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFacePipeline
5
+ from langgraph.graph.message import add_messages
6
+ from langchain.docstore.document import Document
7
+ from langgraph.prebuilt import ToolNode, tools_condition
8
+ from langchain_core.messages import AnyMessage, HumanMessage, AIMessage
9
+ from langchain_community.retrievers import BM25Retriever
10
+ import os
11
+ from langgraph.graph import START, StateGraph
12
+ from langchain.tools import Tool
13
  """
14
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
15
  """
16
+ HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"]
17
+ login(token=HUGGINGFACEHUB_API_TOKEN, add_to_git_credential=True)
18
+
19
+ llm = HuggingFaceEndpoint(
20
+ #repo_id="HuggingFaceH4/zephyr-7b-beta",
21
+ repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
22
+ task="text-generation",
23
+ max_new_tokens=512,
24
+ do_sample=False,
25
+ repetition_penalty=1.03,
26
+ timeout=240,
27
+ )
28
+
29
+ model = ChatHuggingFace(llm=llm, verbose=True)
30
 
31
+ def get_hub_stats(author: str) -> str:
32
+ """
33
+ You are a helpful chatbot for programmers and data scientists with access to the Hugging Face Hub.
34
+ Users will want to know the most popular models from Hugging Face. This tool will enable
35
+ you to fetch the most downloaded model from a specific author on the Hugging Face Hub.
36
+ """
37
+ try:
38
+ # List models from the specified author, sorted by downloads
39
+ models = list(list_models(author=author, sort="downloads", direction=-1, limit=1))
40
+
41
+ if models:
42
+ model = models[0]
43
+ return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads."
44
+ else:
45
+ return f"No models found for author {author}."
46
+ except Exception as e:
47
+ return f"Error fetching models for {author}: {str(e)}"
48
+
49
+ # Initialize the tool
50
+ hub_stats_tool = Tool(
51
+ name="get_hub_stats",
52
+ func=get_hub_stats,
53
+ description="Fetches the most downloaded model from a specific author on the Hugging Face Hub."
54
+ )
55
 
 
 
 
 
 
 
 
 
 
56
 
57
+ def predict(message, history):
58
+ # Convert Gradio history to LangChain message format
59
+ history_langchain_format = []
60
+ for msg in history:
61
+ if msg['role'] == "user":
62
+ history_langchain_format.append(HumanMessage(content=msg['content']))
63
+ elif msg['role'] == "assistant":
64
+ history_langchain_format.append(AIMessage(content=msg['content']))
65
+
66
+ # Add new user message
67
+ history_langchain_format.append(HumanMessage(content=message))
68
+
69
+ # Invoke Alfred agent with full message history
70
+ response = alfred.invoke(
71
+ input={"messages": history_langchain_format},
72
+ config={"recursion_limit": 100}
73
+ )
74
+
75
+ # Extract final assistant message
76
+ return response["messages"][-1].content
77
 
 
78
 
79
+ # setup agents
80
+ tools = [hub_stats_tool]
81
+ #tools = [guest_info_tool]
82
+ chat_with_tools = model.bind_tools(tools)
83
 
84
+ # Generate the AgentState and Agent graph
85
+ class AgentState(TypedDict):
86
+ messages: Annotated[list[AnyMessage], add_messages]
 
 
 
 
 
87
 
88
+ def assistant(state: AgentState):
89
+ return {
90
+ "messages": [chat_with_tools.invoke(state["messages"])],
91
+ }
92
+
93
+ ## The graph
94
+ builder = StateGraph(AgentState)
95
+
96
+ # Define nodes: these do the work
97
+ builder.add_node("assistant", assistant)
98
+ builder.add_node("tools", ToolNode(tools))
99
+
100
+ # Define edges: these determine how the control flow moves
101
+ builder.add_edge(START, "assistant")
102
+ builder.add_conditional_edges(
103
+ "assistant",
104
+ # If the latest message requires a tool, route to tools
105
+ # Otherwise, provide a direct response
106
+ tools_condition,
107
+ )
108
+ builder.add_edge("tools", "assistant")
109
+ alfred = builder.compile()
110
 
111
 
112
  """
113
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
114
  """
115
  demo = gr.ChatInterface(
116
+ predict,
117
+ type="messages"
 
 
 
 
 
 
 
 
 
 
 
118
  )
119
 
120
 
121
  if __name__ == "__main__":
122
  demo.launch()
123
+
124
+