oraculo / evaluation /gen_videos_from_filelist.py
salomonsky's picture
Upload 44 files
fa81432
raw
history blame
7.2 kB
from os import listdir, path
import numpy as np
import scipy, cv2, os, sys, argparse
import dlib, json, subprocess
from tqdm import tqdm
from glob import glob
import torch
sys.path.append('../')
import audio
import face_detection
from models import Wav2Lip
parser = argparse.ArgumentParser(description='Code to generate results for test filelists')
parser.add_argument('--filelist', type=str,
help='Filepath of filelist file to read', required=True)
parser.add_argument('--results_dir', type=str, help='Folder to save all results into',
required=True)
parser.add_argument('--data_root', type=str, required=True)
parser.add_argument('--checkpoint_path', type=str,
help='Name of saved checkpoint to load weights from', required=True)
parser.add_argument('--pads', nargs='+', type=int, default=[0, 0, 0, 0],
help='Padding (top, bottom, left, right)')
parser.add_argument('--face_det_batch_size', type=int,
help='Single GPU batch size for face detection', default=64)
parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip', default=128)
# parser.add_argument('--resize_factor', default=1, type=int)
args = parser.parse_args()
args.img_size = 96
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(images):
batch_size = args.face_det_batch_size
while 1:
predictions = []
try:
for i in range(0, len(images), batch_size):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError('Image too big to run face detection on GPU')
batch_size //= 2
args.face_det_batch_size = batch_size
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pady1, pady2, padx1, padx2 = args.pads
for rect, image in zip(predictions, images):
if rect is None:
raise ValueError('Face not detected!')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = get_smoothened_boxes(np.array(results), T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2), True] for image, (x1, y1, x2, y2) in zip(images, boxes)]
return results
def datagen(frames, face_det_results, mels):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
for i, m in enumerate(mels):
if i >= len(frames): raise ValueError('Equal or less lengths only')
frame_to_save = frames[i].copy()
face, coords, valid_frame = face_det_results[i].copy()
if not valid_frame:
continue
face = cv2.resize(face, (args.img_size, args.img_size))
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= args.wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
fps = 25
mel_step_size = 16
mel_idx_multiplier = 80./fps
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} for inference.'.format(device))
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
flip_input=False, device=device)
def _load(checkpoint_path):
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_model(path):
model = Wav2Lip()
print("Load checkpoint from: {}".format(path))
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
model = model.to(device)
return model.eval()
model = load_model(args.checkpoint_path)
def main():
assert args.data_root is not None
data_root = args.data_root
if not os.path.isdir(args.results_dir): os.makedirs(args.results_dir)
with open(args.filelist, 'r') as filelist:
lines = filelist.readlines()
for idx, line in enumerate(tqdm(lines)):
audio_src, video = line.strip().split()
audio_src = os.path.join(data_root, audio_src) + '.mp4'
video = os.path.join(data_root, video) + '.mp4'
command = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}'.format(audio_src, '../temp/temp.wav')
subprocess.call(command, shell=True)
temp_audio = '../temp/temp.wav'
wav = audio.load_wav(temp_audio, 16000)
mel = audio.melspectrogram(wav)
if np.isnan(mel.reshape(-1)).sum() > 0:
continue
mel_chunks = []
i = 0
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
break
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
i += 1
video_stream = cv2.VideoCapture(video)
full_frames = []
while 1:
still_reading, frame = video_stream.read()
if not still_reading or len(full_frames) > len(mel_chunks):
video_stream.release()
break
full_frames.append(frame)
if len(full_frames) < len(mel_chunks):
continue
full_frames = full_frames[:len(mel_chunks)]
try:
face_det_results = face_detect(full_frames.copy())
except ValueError as e:
continue
batch_size = args.wav2lip_batch_size
gen = datagen(full_frames.copy(), face_det_results, mel_chunks)
for i, (img_batch, mel_batch, frames, coords) in enumerate(gen):
if i == 0:
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter('../temp/result.avi',
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
for pl, f, c in zip(pred, frames, coords):
y1, y2, x1, x2 = c
pl = cv2.resize(pl.astype(np.uint8), (x2 - x1, y2 - y1))
f[y1:y2, x1:x2] = pl
out.write(f)
out.release()
vid = os.path.join(args.results_dir, '{}.mp4'.format(idx))
command = 'ffmpeg -loglevel panic -y -i {} -i {} -strict -2 -q:v 1 {}'.format(temp_audio,
'../temp/result.avi', vid)
subprocess.call(command, shell=True)
if __name__ == '__main__':
main()