Spaces:
Sleeping
Sleeping
import librosa | |
import librosa.filters | |
import numpy as np | |
# import tensorflow as tf | |
from scipy import signal | |
from scipy.io import wavfile | |
from hparams import hparams as hp | |
def load_wav(path, sr): | |
return librosa.core.load(path, sr=sr)[0] | |
def save_wav(wav, path, sr): | |
wav *= 32767 / max(0.01, np.max(np.abs(wav))) | |
wavfile.write(path, sr, wav.astype(np.int16)) | |
def save_wavenet_wav(wav, path, sr): | |
librosa.output.write_wav(path, wav, sr=sr) | |
def preemphasis(wav, k, preemphasize=True): | |
if preemphasize: | |
return signal.lfilter([1, -k], [1], wav) | |
return wav | |
def inv_preemphasis(wav, k, inv_preemphasize=True): | |
if inv_preemphasize: | |
return signal.lfilter([1], [1, -k], wav) | |
return wav | |
def get_hop_size(): | |
hop_size = hp.hop_size | |
if hop_size is None: | |
assert hp.frame_shift_ms is not None | |
hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate) | |
return hop_size | |
def linearspectrogram(wav): | |
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize)) | |
S = _amp_to_db(np.abs(D)) - hp.ref_level_db | |
if hp.signal_normalization: | |
return _normalize(S) | |
return S | |
def melspectrogram(wav): | |
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize)) | |
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db | |
if hp.signal_normalization: | |
return _normalize(S) | |
return S | |
def _lws_processor(): | |
import lws | |
return lws.lws(hp.n_fft, get_hop_size(), fftsize=hp.win_size, mode="speech") | |
def _stft(y): | |
if hp.use_lws: | |
return _lws_processor(hp).stft(y).T | |
else: | |
return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size) | |
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!) | |
def num_frames(length, fsize, fshift): | |
"""Compute number of time frames of spectrogram | |
""" | |
pad = (fsize - fshift) | |
if length % fshift == 0: | |
M = (length + pad * 2 - fsize) // fshift + 1 | |
else: | |
M = (length + pad * 2 - fsize) // fshift + 2 | |
return M | |
def pad_lr(x, fsize, fshift): | |
"""Compute left and right padding | |
""" | |
M = num_frames(len(x), fsize, fshift) | |
pad = (fsize - fshift) | |
T = len(x) + 2 * pad | |
r = (M - 1) * fshift + fsize - T | |
return pad, pad + r | |
#Librosa correct padding | |
def librosa_pad_lr(x, fsize, fshift): | |
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0] | |
# Conversions | |
_mel_basis = None | |
def _linear_to_mel(spectogram): | |
global _mel_basis | |
if _mel_basis is None: | |
_mel_basis = _build_mel_basis() | |
return np.dot(_mel_basis, spectogram) | |
def _build_mel_basis(): | |
assert hp.fmax <= hp.sample_rate // 2 | |
return librosa.filters.mel(sr=hp.sample_rate, n_fft=hp.n_fft, n_mels=hp.num_mels, fmin=hp.fmin, fmax=hp.fmax) | |
def _amp_to_db(x): | |
min_level = np.exp(hp.min_level_db / 20 * np.log(10)) | |
return 20 * np.log10(np.maximum(min_level, x)) | |
def _db_to_amp(x): | |
return np.power(10.0, (x) * 0.05) | |
def _normalize(S): | |
if hp.allow_clipping_in_normalization: | |
if hp.symmetric_mels: | |
return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value, | |
-hp.max_abs_value, hp.max_abs_value) | |
else: | |
return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value) | |
assert S.max() <= 0 and S.min() - hp.min_level_db >= 0 | |
if hp.symmetric_mels: | |
return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value | |
else: | |
return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)) | |
def _denormalize(D): | |
if hp.allow_clipping_in_normalization: | |
if hp.symmetric_mels: | |
return (((np.clip(D, -hp.max_abs_value, | |
hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) | |
+ hp.min_level_db) | |
else: | |
return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db) | |
if hp.symmetric_mels: | |
return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db) | |
else: | |
return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db) |