Spaces:
Sleeping
Sleeping
File size: 3,044 Bytes
05d3cbf c361e08 b3d0e64 05d3cbf b71115e b3d0e64 10aef09 5bc77f9 cf08cd9 05d3cbf b3d0e64 05d3cbf b3d0e64 4caa659 b43a3bd 05d3cbf b43a3bd b3d0e64 05d3cbf 4caa659 05d3cbf 4caa659 b43a3bd 05d3cbf b3d0e64 8ec6b72 3381074 05d3cbf ae6fcec b43a3bd 10aef09 b71115e 05d3cbf fe4d261 ae6fcec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import gradio as gr
import os
from gtts import gTTS
from pydub import AudioSegment
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline
from PIL import Image
generator = pipeline('text-generation', model="checkpoints")
tokenizer = GPT2Tokenizer.from_pretrained('checkpoints')
os.environ["TOKENIZERS_PARALLELISM"] = "true"
def generate_output(name, date_of_birth, image):
prompt = f"Tu carta astral de hoy {name} es:"
input_tokens = tokenizer.encode(prompt, add_special_tokens=False)
input_text = tokenizer.decode(input_tokens)
gpt2_output = generator(input_text, max_length=120, do_sample=True, temperature=0.9)
generated_text = gpt2_output[0]['generated_text']
generated_text = generated_text.replace(input_text, "").strip()
if len(gpt2_output) == 0 or 'generated_text' not in gpt2_output[0]:
return None, "No se pudo generar el texto."
try:
tts = gTTS(generated_text, lang='es')
temp_audio_path = "temp_audio.mp3"
tts.save(temp_audio_path)
audio_path = "audio.wav"
audio = AudioSegment.from_mp3(temp_audio_path)
audio.export(audio_path, format="wav")
print("Archivo de audio generado:", audio_path)
except Exception as e:
return None, f"No se pudo generar el audio: {str(e)}"
command = f"python3 inference.py --checkpoint_path checkpoints/wav2lip_gan.pth --face {image} --audio audio.wav --outfile video.mp4 --nosmooth"
process = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if process.returncode != 0:
error_message = process.stderr.decode("utf-8")
return None, f"No se pudo generar el video: {error_message}"
output_video_path = "video.mp4"
os.remove(temp_audio_path)
if os.path.isfile(output_video_path):
return output_video_path, None
return None, "No se pudo generar el video"
def error_message_fn(error_message):
if error_message is not None:
return gr.outputs.Textbox(text=error_message, placeholder="Error")
else:
return None
def get_thumbnail(image_path, width):
image = Image.open(image_path)
image.thumbnail((width, width))
return image
choices = ["1.jpg", "2.jpg", "3.jpg", "4.jpg", "5.jpg", "6.jpg"]
thumbnails = [get_thumbnail(image, 50) for image in choices]
iface = gr.Interface(
fn=generate_output,
inputs=[
gr.inputs.Textbox(lines=1, label="Nombre", placeholder="Ingresa tu nombre"),
gr.inputs.Textbox(lines=1, label="Fecha de Nacimiento", placeholder="DD/MM/AAAA"),
gr.inputs.Image(label="Selecciona una imagen:", image_mode="RGB", choices=choices, thumbnails=thumbnails)
],
outputs=[
gr.outputs.Video(label="Respuesta de Andrea (un minuto aproximadamente)").style(width=256),
gr.outputs.Textbox(label="Mensaje de error", type="text")
],
title="Oráculo de Inteligencia Artificial v2.1",
layout="vertical",
description="Por favor, ingresa tu nombre y fecha de nacimiento."
)
iface.launch() |