salomonsky commited on
Commit
2f35681
1 Parent(s): 5e03798

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -31,9 +31,9 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
31
  image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
32
  return image, seed
33
 
34
- async def gen(prompt, basemodel, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
35
- model = enable_lora(lora_add, basemodel)
36
- image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
37
  image_path = "temp_image.png"
38
  image.save(image_path)
39
 
@@ -65,7 +65,7 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
65
  with gr.Column(scale=0.8):
66
  prompt = gr.Textbox(label="Prompt")
67
  basemodel_choice = gr.Dropdown(label="Base Model", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
68
- lora_model_choice = gr.Dropdown(label="LORA Model", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "Otro modelo LORA"])
69
  process_lora = gr.Checkbox(label="Process LORA", value=True)
70
  upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 4, 8], value=2, scale=2)
71
  process_upscale = gr.Checkbox(label="Process Upscale", value=False)
@@ -76,8 +76,6 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
76
  scales = gr.Slider(label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5)
77
  steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=24)
78
  seed = gr.Slider(label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
79
- lora_add = gr.Textbox(label="Add Flux LoRA", info="Modelo Lora", lines=1, value="XLabs-AI/flux-RealismLora")
80
- lora_word = gr.Textbox(label="Add Flux LoRA Trigger Word", info="Add the Trigger Word", lines=1, value="")
81
 
82
  submit_btn = gr.Button("Submit", scale=1)
83
  submit_btn.click(
@@ -87,7 +85,7 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
87
  queue=False
88
  ).then(
89
  fn=gen,
90
- inputs=[prompt, basemodel_choice, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora],
91
  outputs=[output_res]
92
  )
93
  demo.launch()
 
31
  image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
32
  return image, seed
33
 
34
+ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
35
+ model = lora_model
36
+ image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
37
  image_path = "temp_image.png"
38
  image.save(image_path)
39
 
 
65
  with gr.Column(scale=0.8):
66
  prompt = gr.Textbox(label="Prompt")
67
  basemodel_choice = gr.Dropdown(label="Base Model", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
68
+ lora_model_choice = gr.Dropdown(label="LORA Model", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"])
69
  process_lora = gr.Checkbox(label="Process LORA", value=True)
70
  upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 4, 8], value=2, scale=2)
71
  process_upscale = gr.Checkbox(label="Process Upscale", value=False)
 
76
  scales = gr.Slider(label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5)
77
  steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=24)
78
  seed = gr.Slider(label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
 
 
79
 
80
  submit_btn = gr.Button("Submit", scale=1)
81
  submit_btn.click(
 
85
  queue=False
86
  ).then(
87
  fn=gen,
88
+ inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora],
89
  outputs=[output_res]
90
  )
91
  demo.launch()