flux3 / app.py
salomonsky's picture
Update app.py
8221a06 verified
raw
history blame
5.52 kB
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
translator = Translator()
HF_TOKEN = os.environ.get("HF_TOKEN", None)
basemodel = "black-forest-labs/FLUX.1-dev"
MAX_SEED = np.iinfo(np.int32).max
CSS = """
footer {
visibility: hidden;
}
"""
JS = """function () {
gradioURL = window.location.href
if (!gradioURL.endsWith('?__theme=dark')) {
window.location.replace(gradioURL + '?__theme=dark');
}
}"""
def enable_lora(lora_add):
if not lora_add:
return basemodel
else:
return lora_add
async def generate_image(
prompt:str,
model:str,
lora_word:str,
width:int=768,
height:int=1024,
scales:float=3.5,
steps:int=24,
seed:int=-1):
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
print(f'prompt:{prompt}')
text = str(translator.translate(prompt, 'English')) + "," + lora_word
client = AsyncInferenceClient()
try:
image = await client.text_to_image(
prompt=text,
height=height,
width=width,
guidance_scale=scales,
num_inference_steps=steps,
model=model,
)
except Exception as e:
raise gr.Error(f"Error in {e}")
return image, seed
async def upscale_image(image, upscale_factor):
client = AsyncInferenceClient()
try:
result = await client.predict(
input_image=image,
prompt="",
negative_prompt="",
seed=42,
upscale_factor=upscale_factor,
controlnet_scale=0.6,
controlnet_decay=1,
condition_scale=6,
tile_width=112,
tile_height=144,
denoise_strength=0.35,
num_inference_steps=18,
solver="DDIM",
api_name="/process",
model="finegrain/finegrain-image-enhancer"
)
except Exception as e:
raise gr.Error(f"Error in {e}")
return result[1]
async def gen(
prompt:str,
lora_add:str="XLabs-AI/flux-RealismLora",
lora_word:str="",
width:int=768,
height:int=1024,
scales:float=3.5,
steps:int=24,
seed:int=-1,
upscale_factor:int=2,
progress=gr.Progress(track_tqdm=True)
):
model = enable_lora(lora_add)
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
image_path = "image.png"
image.save(image_path)
upscaled_image = await upscale_image(image_path, upscale_factor)
return upscaled_image, seed
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
gr.HTML("<h1><center>Flux Lab Light</center></h1>")
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
img = gr.Image(type="filepath", label='Imagen generada por Flux', height=600)
with gr.Row():
prompt = gr.Textbox(label='Ingresa tu prompt (Multi-Idiomas)', placeholder="Ingresa prompt...", scale=6)
sendBtn = gr.Button(scale=1, variant='primary')
with gr.Accordion("Opciones avanzadas", open=True):
with gr.Column(scale=1):
width = gr.Slider(
label="Ancho",
minimum=512,
maximum=1280,
step=8,
value=768,
)
height = gr.Slider(
label="Alto",
minimum=512,
maximum=1280,
step=8,
value=1024,
)
scales = gr.Slider(
label="Guía",
minimum=3.5,
maximum=7,
step=0.1,
value=3.5,
)
steps = gr.Slider(
label="Pasos",
minimum=1,
maximum=100,
step=1,
value=24,
)
seed = gr.Slider(
label="Semillas",
minimum=-1,
maximum=MAX_SEED,
step=1,
value=-1,
)
lora_add = gr.Textbox(
label="Agregar Flux LoRA",
info="Modelo de LoRA a agregar",
lines=1,
value="XLabs-AI/flux-RealismLora",
)
lora_word = gr.Textbox(
label="Palabra clave de LoRA",
info="Palabra clave para activar el modelo de LoRA",
lines=1,
value="",
)
upscale_factor = gr.Radio(
label="Factor de escalado",
choices=[2, 3, 4],
value=2,
)
gr.on(
triggers=[
prompt.submit,
sendBtn.click,
],
fn=gen,
inputs=[
prompt,
lora_add,
lora_word,
width,
height,
scales,
steps,
seed,
upscale_factor
],
outputs=[img, seed]
)
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False, share=False)