Spaces:
Running
Running
import os | |
import numpy as np | |
import random | |
from pathlib import Path | |
from PIL import Image | |
import streamlit as st | |
from huggingface_hub import InferenceClient, AsyncInferenceClient | |
from gradio_client import Client, handle_file | |
import asyncio | |
from concurrent.futures import ThreadPoolExecutor | |
import yaml | |
import cv2 | |
import dlib | |
# Cargar configuraci贸n | |
try: | |
with open("config.yaml", "r") as file: | |
credentials = yaml.safe_load(file) | |
except Exception as e: | |
st.error(f"Error al cargar el archivo de configuraci贸n: {e}") | |
credentials = {"username": "", "password": ""} | |
MAX_SEED = np.iinfo(np.int32).max | |
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER") | |
client = AsyncInferenceClient() | |
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
DATA_PATH = Path("./data") | |
DATA_PATH.mkdir(exist_ok=True) | |
def run_async(func): | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
executor = ThreadPoolExecutor(max_workers=1) | |
result = loop.run_in_executor(executor, func) | |
return loop.run_until_complete(result) | |
async def generate_image(combined_prompt, model, width, height, scales, steps, seed): | |
seed = int(seed) if seed != -1 else random.randint(0, MAX_SEED) | |
try: | |
image = await client.text_to_image( | |
prompt=combined_prompt, height=height, width=width, guidance_scale=scales, | |
num_inference_steps=steps, model=model | |
) | |
return image, seed | |
except Exception as e: | |
return f"Error al generar imagen: {e}", None | |
def get_upscale_finegrain(prompt, img_path, upscale_factor): | |
try: | |
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER) | |
result = client.predict( | |
input_image=handle_file(img_path), prompt=prompt, upscale_factor=upscale_factor | |
) | |
return result[1] if isinstance(result, list) and len(result) > 1 else None | |
except Exception: | |
return None | |
def save_prompt(prompt_text, seed): | |
try: | |
prompt_file_path = DATA_PATH / f"prompt_{seed}.txt" | |
with open(prompt_file_path, "w") as prompt_file: | |
prompt_file.write(prompt_text) | |
return prompt_file_path | |
except Exception as e: | |
st.error(f"Error al guardar el prompt: {e}") | |
return None | |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, process_enhancer, language): | |
combined_prompt = f"{prompt} {await improve_prompt(prompt, language) if process_enhancer else ''}".strip() | |
seed = int(seed) if seed != -1 else random.randint(0, MAX_SEED) | |
progress_bar = st.progress(0) | |
image, seed = await generate_image(combined_prompt, basemodel, width, height, scales, steps, seed) | |
progress_bar.progress(50) | |
if isinstance(image, str) and image.startswith("Error"): | |
progress_bar.empty() | |
return [image, None, combined_prompt] | |
image_path = save_image(image, seed) | |
prompt_file_path = save_prompt(combined_prompt, seed) | |
if process_upscale: | |
upscale_image_path = get_upscale_finegrain(combined_prompt, image_path, upscale_factor) | |
if upscale_image_path: | |
Image.open(upscale_image_path).save(DATA_PATH / f"upscale_image_{seed}.jpg", format="JPEG") | |
progress_bar.progress(100) | |
image_path.unlink() | |
return [str(DATA_PATH / f"upscale_image_{seed}.jpg"), str(prompt_file_path)] | |
progress_bar.progress(100) | |
return [str(image_path), str(prompt_file_path)] | |
async def improve_prompt(prompt, language): | |
instruction = ( | |
"Con esta idea, describe en espa帽ol un prompt detallado de txt2img en un m谩ximo de 500 caracteres, " | |
"con iluminaci贸n, atm贸sfera, elementos cinematogr谩ficos y en su caso personajes..." | |
if language == "es" else | |
"With this idea, describe in English a detailed txt2img prompt in 500 characters at most, " | |
"add illumination, atmosphere, cinematic elements, and characters if needed..." | |
) | |
formatted_prompt = f"{prompt}: {instruction}" | |
response = llm_client.text_generation(formatted_prompt, max_new_tokens=500) | |
improved_text = response.get('generated_text', '').strip() if 'generated_text' in response else response.strip() | |
return improved_text[:500] if len(improved_text) > 500 else improved_text | |
def save_image(image, seed): | |
try: | |
image_path = DATA_PATH / f"image_{seed}.jpg" | |
image.save(image_path, format="JPEG") | |
return image_path | |
except Exception as e: | |
st.error(f"Error al guardar la imagen: {e}") | |
return None | |
def get_storage(): | |
files = [file for file in DATA_PATH.glob("*.jpg") if file.is_file()] | |
files.sort(key=lambda x: x.stat().st_mtime, reverse=True) | |
usage = sum(file.stat().st_size for file in files) | |
return [str(file.resolve()) for file in files], f"Uso total: {usage / (1024.0 ** 3):.3f}GB" | |
def get_prompts(): | |
prompt_files = [file for file in DATA_PATH.glob("*.txt") if file.is_file()] | |
return {file.stem.replace("prompt_", ""): file for file in prompt_files} | |
def delete_image(image_path): | |
try: | |
if Path(image_path).exists(): | |
Path(image_path).unlink() | |
st.success(f"Imagen {image_path} borrada.") | |
else: | |
st.error("El archivo de imagen no existe.") | |
except Exception as e: | |
st.error(f"Error al borrar la imagen: {e}") | |
def swap_faces(image_path): | |
try: | |
image = cv2.imread(str(image_path)) | |
detector = dlib.get_frontal_face_detector() | |
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") | |
faces = detector(image) | |
if len(faces) != 2: | |
st.error("Se necesitan exactamente dos caras para realizar el intercambio.") | |
return None | |
landmarks1 = predictor(image, faces[0]) | |
landmarks2 = predictor(image, faces[1]) | |
points1 = np.array([[p.x, p.y] for p in landmarks1.parts()]) | |
points2 = np.array([[p.x, p.y] for p in landmarks2.parts()]) | |
mask1 = np.zeros(image.shape[:2], dtype=np.uint8) | |
cv2.fillConvexPoly(mask1, cv2.convexHull(points1), 255) | |
mask2 = np.zeros(image.shape[:2], dtype=np.uint8) | |
cv2.fillConvexPoly(mask2, cv2.convexHull(points2), 255) | |
face1 = cv2.bitwise_and(image, image, mask=mask1) | |
face2 = cv2.bitwise_and(image, image, mask=mask2) | |
image[mask1 == 255] = face2[mask1 == 255] | |
image[mask2 == 255] = face1[mask2 == 255] | |
swapped_image_path = DATA_PATH / f"swapped_image_{Path(image_path).stem}.jpg" | |
cv2.imwrite(str(swapped_image_path), image) | |
return str(swapped_image_path) | |
except Exception as e: | |
st.error(f"Error en el face swap: {e}") | |
return None | |
def main(): | |
st.set_page_config(layout="wide") | |
prompt = st.sidebar.text_input("Descripci贸n de la imagen", max_chars=900) | |
process_enhancer = st.sidebar.checkbox("Mejorar Prompt", value=False) | |
language = st.sidebar.selectbox("Idioma", ["en", "es"]) | |
basemodel = st.sidebar.selectbox("Modelo Base", ["black-forest-labs/FLUX.1-DEV", "black-forest-labs/FLUX.1-schnell"]) | |
format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9"]) | |
process_upscale = st.sidebar.checkbox("Procesar Escalador", value=False) | |
upscale_factor = st.sidebar.selectbox("Factor de Escala", [2, 4, 8], index=0) | |
scales = st.sidebar.slider("Escalado", 1, 20, 10) | |
steps = st.sidebar.slider("Pasos", 1, 100, 20) | |
seed = st.sidebar.number_input("Semilla", value=-1) | |
width, height = (720, 1280) if format_option == "9:16" else (1280, 720) | |
if st.sidebar.button("Generar Imagen"): | |
with st.spinner("Mejorando y generando imagen..."): | |
result = asyncio.run(gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, process_enhancer, language)) | |
image_paths, prompt_file = result[0], result[1] | |
st.write(f"Image paths: {image_paths}") | |
if image_paths and Path(image_paths).exists(): | |
st.image(image_paths, caption="Imagen generada", use_column_width=True) | |
if prompt_file and Path(prompt_file).exists(): | |
with open(prompt_file, "r") as file: | |
st.text_area("Prompt utilizado", file.read(), height=150) | |
st.sidebar.header("Galer铆a de Im谩genes") | |
image_storage, usage = get_storage() | |
st.sidebar.write(usage) | |
for img_path in image_storage: | |
st.sidebar.image(img_path, width=100) | |
if st.sidebar.button("Borrar Imagen"): | |
delete_image(image_paths) | |
if st.sidebar.button("Intercambiar Caras"): | |
if image_paths: | |
swapped_path = swap_faces(image_paths) | |
if swapped_path: | |
st.image(swapped_path, caption="Imagen con caras intercambiadas", use_column_width=True) | |
if __name__ == "__main__": | |
main() |