flux3 / app.py
salomonsky's picture
Update app.py
7bf5a19 verified
raw
history blame
8.88 kB
import os
import numpy as np
import random
from pathlib import Path
from PIL import Image
import streamlit as st
from huggingface_hub import InferenceClient, AsyncInferenceClient
from gradio_client import Client, handle_file
import asyncio
from concurrent.futures import ThreadPoolExecutor
import yaml
import cv2
import dlib
# Cargar configuraci贸n
try:
with open("config.yaml", "r") as file:
credentials = yaml.safe_load(file)
except Exception as e:
st.error(f"Error al cargar el archivo de configuraci贸n: {e}")
credentials = {"username": "", "password": ""}
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
client = AsyncInferenceClient()
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
DATA_PATH = Path("./data")
DATA_PATH.mkdir(exist_ok=True)
def run_async(func):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
executor = ThreadPoolExecutor(max_workers=1)
result = loop.run_in_executor(executor, func)
return loop.run_until_complete(result)
async def generate_image(combined_prompt, model, width, height, scales, steps, seed):
seed = int(seed) if seed != -1 else random.randint(0, MAX_SEED)
try:
image = await client.text_to_image(
prompt=combined_prompt, height=height, width=width, guidance_scale=scales,
num_inference_steps=steps, model=model
)
return image, seed
except Exception as e:
return f"Error al generar imagen: {e}", None
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
result = client.predict(
input_image=handle_file(img_path), prompt=prompt, upscale_factor=upscale_factor
)
return result[1] if isinstance(result, list) and len(result) > 1 else None
except Exception:
return None
def save_prompt(prompt_text, seed):
try:
prompt_file_path = DATA_PATH / f"prompt_{seed}.txt"
with open(prompt_file_path, "w") as prompt_file:
prompt_file.write(prompt_text)
return prompt_file_path
except Exception as e:
st.error(f"Error al guardar el prompt: {e}")
return None
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, process_enhancer, language):
combined_prompt = f"{prompt} {await improve_prompt(prompt, language) if process_enhancer else ''}".strip()
seed = int(seed) if seed != -1 else random.randint(0, MAX_SEED)
progress_bar = st.progress(0)
image, seed = await generate_image(combined_prompt, basemodel, width, height, scales, steps, seed)
progress_bar.progress(50)
if isinstance(image, str) and image.startswith("Error"):
progress_bar.empty()
return [image, None, combined_prompt]
image_path = save_image(image, seed)
prompt_file_path = save_prompt(combined_prompt, seed)
if process_upscale:
upscale_image_path = get_upscale_finegrain(combined_prompt, image_path, upscale_factor)
if upscale_image_path:
Image.open(upscale_image_path).save(DATA_PATH / f"upscale_image_{seed}.jpg", format="JPEG")
progress_bar.progress(100)
image_path.unlink()
return [str(DATA_PATH / f"upscale_image_{seed}.jpg"), str(prompt_file_path)]
progress_bar.progress(100)
return [str(image_path), str(prompt_file_path)]
async def improve_prompt(prompt, language):
instruction = (
"Con esta idea, describe en espa帽ol un prompt detallado de txt2img en un m谩ximo de 500 caracteres, "
"con iluminaci贸n, atm贸sfera, elementos cinematogr谩ficos y en su caso personajes..."
if language == "es" else
"With this idea, describe in English a detailed txt2img prompt in 500 characters at most, "
"add illumination, atmosphere, cinematic elements, and characters if needed..."
)
formatted_prompt = f"{prompt}: {instruction}"
response = llm_client.text_generation(formatted_prompt, max_new_tokens=500)
improved_text = response.get('generated_text', '').strip() if 'generated_text' in response else response.strip()
return improved_text[:500] if len(improved_text) > 500 else improved_text
def save_image(image, seed):
try:
image_path = DATA_PATH / f"image_{seed}.jpg"
image.save(image_path, format="JPEG")
return image_path
except Exception as e:
st.error(f"Error al guardar la imagen: {e}")
return None
def get_storage():
files = [file for file in DATA_PATH.glob("*.jpg") if file.is_file()]
files.sort(key=lambda x: x.stat().st_mtime, reverse=True)
usage = sum(file.stat().st_size for file in files)
return [str(file.resolve()) for file in files], f"Uso total: {usage / (1024.0 ** 3):.3f}GB"
def get_prompts():
prompt_files = [file for file in DATA_PATH.glob("*.txt") if file.is_file()]
return {file.stem.replace("prompt_", ""): file for file in prompt_files}
def delete_image(image_path):
try:
if Path(image_path).exists():
Path(image_path).unlink()
st.success(f"Imagen {image_path} borrada.")
else:
st.error("El archivo de imagen no existe.")
except Exception as e:
st.error(f"Error al borrar la imagen: {e}")
def swap_faces(image_path):
try:
image = cv2.imread(str(image_path))
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
faces = detector(image)
if len(faces) != 2:
st.error("Se necesitan exactamente dos caras para realizar el intercambio.")
return None
landmarks1 = predictor(image, faces[0])
landmarks2 = predictor(image, faces[1])
points1 = np.array([[p.x, p.y] for p in landmarks1.parts()])
points2 = np.array([[p.x, p.y] for p in landmarks2.parts()])
mask1 = np.zeros(image.shape[:2], dtype=np.uint8)
cv2.fillConvexPoly(mask1, cv2.convexHull(points1), 255)
mask2 = np.zeros(image.shape[:2], dtype=np.uint8)
cv2.fillConvexPoly(mask2, cv2.convexHull(points2), 255)
face1 = cv2.bitwise_and(image, image, mask=mask1)
face2 = cv2.bitwise_and(image, image, mask=mask2)
image[mask1 == 255] = face2[mask1 == 255]
image[mask2 == 255] = face1[mask2 == 255]
swapped_image_path = DATA_PATH / f"swapped_image_{Path(image_path).stem}.jpg"
cv2.imwrite(str(swapped_image_path), image)
return str(swapped_image_path)
except Exception as e:
st.error(f"Error en el face swap: {e}")
return None
def main():
st.set_page_config(layout="wide")
prompt = st.sidebar.text_input("Descripci贸n de la imagen", max_chars=900)
process_enhancer = st.sidebar.checkbox("Mejorar Prompt", value=False)
language = st.sidebar.selectbox("Idioma", ["en", "es"])
basemodel = st.sidebar.selectbox("Modelo Base", ["black-forest-labs/FLUX.1-DEV", "black-forest-labs/FLUX.1-schnell"])
format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9"])
process_upscale = st.sidebar.checkbox("Procesar Escalador", value=False)
upscale_factor = st.sidebar.selectbox("Factor de Escala", [2, 4, 8], index=0)
scales = st.sidebar.slider("Escalado", 1, 20, 10)
steps = st.sidebar.slider("Pasos", 1, 100, 20)
seed = st.sidebar.number_input("Semilla", value=-1)
width, height = (720, 1280) if format_option == "9:16" else (1280, 720)
if st.sidebar.button("Generar Imagen"):
with st.spinner("Mejorando y generando imagen..."):
result = asyncio.run(gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, process_enhancer, language))
image_paths, prompt_file = result[0], result[1]
st.write(f"Image paths: {image_paths}")
if image_paths and Path(image_paths).exists():
st.image(image_paths, caption="Imagen generada", use_column_width=True)
if prompt_file and Path(prompt_file).exists():
with open(prompt_file, "r") as file:
st.text_area("Prompt utilizado", file.read(), height=150)
st.sidebar.header("Galer铆a de Im谩genes")
image_storage, usage = get_storage()
st.sidebar.write(usage)
for img_path in image_storage:
st.sidebar.image(img_path, width=100)
if st.sidebar.button("Borrar Imagen"):
delete_image(image_paths)
if st.sidebar.button("Intercambiar Caras"):
if image_paths:
swapped_path = swap_faces(image_paths)
if swapped_path:
st.image(swapped_path, caption="Imagen con caras intercambiadas", use_column_width=True)
if __name__ == "__main__":
main()