flux3 / app.py
salomonsky's picture
Update app.py
165b2f6 verified
raw
history blame
3.99 kB
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
from huggingface_hub import login
from gradio_imageslider import ImageSlider
translator = Translator()
HF_TOKEN = os.environ.get("HF_TOKEN")
basemodel = "black-forest-labs/FLUX.1-schnell"
MAX_SEED = np.iinfo(np.int32).max
CSS = "footer { visibility: hidden; }"
JS = "function () { gradioURL = window.location.href; if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }"
def enable_lora(lora_add):
return basemodel if not lora_add else lora_add
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
try:
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
text = str(translator.translate(prompt, 'English')) + "," + lora_word
client = AsyncInferenceClient()
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
return image, seed
except Exception as e:
raise gr.Error(f"Error en {e}")
async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, process_upscale):
model = enable_lora(lora_add)
image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
image_path = "temp_image.png"
image.save(image_path)
if process_upscale:
upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
else:
upscale_image = image_path
return [image_path, upscale_image]
def get_upscale_finegrain(prompt, img_path, upscale_factor):
client = Client("finegrain/finegrain-image-enhancer")
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
return result[1]
css = """
#col-container{
margin: 0 auto;
max-width: 1024px;
}
"""
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("Flux Upscaled +LORA")
with gr.Group():
prompt = gr.Textbox(label="Prompt")
with gr.Row():
lora_add = gr.Textbox(label="Add Flux LoRA", info="Modelo Lora", lines=1, value="XLabs-AI/flux-RealismLora")
lora_word = gr.Textbox(label="Add Flux LoRA Trigger Word", info="Add the Trigger Word", lines=1, value="")
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=768)
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=1024)
scales = gr.Slider(label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=24)
seed = gr.Slider(label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 3, 4], value=2, scale=2)
process_upscale = gr.Checkbox(label="Process Upscale", value=True)
submit_btn = gr.Button("Submit", scale=1)
output_res = ImageSlider(label="Flux / Upscaled")
submit_btn.click(
fn=lambda: None,
inputs=None,
outputs=[output_res],
queue=False
).then(
fn=gen,
inputs=[prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, process_upscale],
outputs=[output_res]
)
demo.launch()