File size: 2,593 Bytes
ef187eb
 
0916cce
0cffd40
d0f928e
63b6eaf
f14baf4
 
0916cce
2b0f02c
11fa80e
0cffd40
8b1e96d
0916cce
 
8b1e96d
ec35e66
 
 
 
4efab5c
 
 
ec35e66
 
4efab5c
 
 
 
 
 
 
8b1e96d
d0f928e
0916cce
 
 
8b1e96d
 
 
b3e3306
ce19625
 
f4107e3
0916cce
9b38787
0916cce
 
 
 
f14baf4
3a2b9b2
8b1e96d
ce19625
f14baf4
0916cce
ce19625
 
0916cce
 
8b3ca8d
0916cce
 
 
 
 
 
 
0cffd40
8b1e96d
0cffd40
0916cce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import gradio as gr
import torch
from diffusers import StableAudioPipeline
from huggingface_hub import hf_hub_download
import spaces
from translatepy import Translator
import numpy as np
import random
import soundfile as sf

translator = Translator()

# Constants
model = "stabilityai/stable-audio-open-1.0"
# MAX_SEED = np.iinfo(np.int32).max

CSS = """
.gradio-container {
  max-width: 690px !important;
}
footer {
    visibility: hidden;
}
"""

JS = """function () {
  gradioURL = window.location.href
  if (!gradioURL.endsWith('?__theme=dark')) {
    window.location.replace(gradioURL + '?__theme=dark');
  }
}"""

# Ensure model and scheduler are initialized in GPU-enabled function
if torch.cuda.is_available():
    pipe = StableAudioPipeline.from_pretrained(
        model,
        torch_dtype=torch.float16).to("cuda")


# Function 
@spaces.GPU(duration=120)
def generate_image(
    prompt,
    negative="low quality",
    second: float = 10.0):
    
    # if seed == -1:
    #     seed = random.randint(0, MAX_SEED)
    # seed = int(seed)
    # generator = torch.Generator().manual_seed(seed)
    
    prompt = str(translator.translate(prompt, 'English'))

    print(f'prompt:{prompt}')

    audio = pipe(
        prompt, 
        negative_prompt=negative, 
        audio_end_in_s=second,
    ).audios

    os.makedirs("outputs", exist_ok=True)
    base_count = len(glob(os.path.join("outputs", "*.mp4")))
    audio_path = os.path.join("outputs", f"{base_count:06d}.wav")
    
    sf.write(audio_path, audio[0].T.float().cpu().numpy(), pipe.vae.samping_rate)
    
    return audio_path

# Gradio Interface

with gr.Blocks(theme='soft', css=css, title="Stable Audio Open") as iface:
    with gr.Accordion(""):
        gr.Markdown(DESCRIPTION)
    with gr.Row():
        output = gr.Audio(label="Podcast", type="filepath", interactive=False, autoplay=True, elem_classes="audio")  # Create an output textbox
    with gr.Row():
        prompt = gr.Textbox(label="Prompt", placeholder="1000 BPM percussive sound of water drops")
    with gr.Row():
        negative = gr.Textbox(label="Negative prompt", placeholder="Low quality")
        second =  gr.Slider(5.0, 60.0, value=10.0, label="Second", step=0.1),
    with gr.Row():
        submit_btn = gr.Button("πŸš€ Send")  # Create a submit button
        clear_btn = gr.ClearButton(output_box, value="πŸ—‘οΈ Clear") # Create a clear button

    # Set up the event listeners
    submit_btn.click(main, inputs=[prompt, negative, second], outputs=output)


#gr.close_all()

iface.queue().launch(show_api=False)  # Launch the Gradio interface