Spaces:
Runtime error
Runtime error
File size: 2,593 Bytes
ef187eb 0916cce 0cffd40 d0f928e 63b6eaf f14baf4 0916cce 2b0f02c 11fa80e 0cffd40 8b1e96d 0916cce 8b1e96d ec35e66 4efab5c ec35e66 4efab5c 8b1e96d d0f928e 0916cce 8b1e96d b3e3306 ce19625 f4107e3 0916cce 9b38787 0916cce f14baf4 3a2b9b2 8b1e96d ce19625 f14baf4 0916cce ce19625 0916cce 8b3ca8d 0916cce 0cffd40 8b1e96d 0cffd40 0916cce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import gradio as gr
import torch
from diffusers import StableAudioPipeline
from huggingface_hub import hf_hub_download
import spaces
from translatepy import Translator
import numpy as np
import random
import soundfile as sf
translator = Translator()
# Constants
model = "stabilityai/stable-audio-open-1.0"
# MAX_SEED = np.iinfo(np.int32).max
CSS = """
.gradio-container {
max-width: 690px !important;
}
footer {
visibility: hidden;
}
"""
JS = """function () {
gradioURL = window.location.href
if (!gradioURL.endsWith('?__theme=dark')) {
window.location.replace(gradioURL + '?__theme=dark');
}
}"""
# Ensure model and scheduler are initialized in GPU-enabled function
if torch.cuda.is_available():
pipe = StableAudioPipeline.from_pretrained(
model,
torch_dtype=torch.float16).to("cuda")
# Function
@spaces.GPU(duration=120)
def generate_image(
prompt,
negative="low quality",
second: float = 10.0):
# if seed == -1:
# seed = random.randint(0, MAX_SEED)
# seed = int(seed)
# generator = torch.Generator().manual_seed(seed)
prompt = str(translator.translate(prompt, 'English'))
print(f'prompt:{prompt}')
audio = pipe(
prompt,
negative_prompt=negative,
audio_end_in_s=second,
).audios
os.makedirs("outputs", exist_ok=True)
base_count = len(glob(os.path.join("outputs", "*.mp4")))
audio_path = os.path.join("outputs", f"{base_count:06d}.wav")
sf.write(audio_path, audio[0].T.float().cpu().numpy(), pipe.vae.samping_rate)
return audio_path
# Gradio Interface
with gr.Blocks(theme='soft', css=css, title="Stable Audio Open") as iface:
with gr.Accordion(""):
gr.Markdown(DESCRIPTION)
with gr.Row():
output = gr.Audio(label="Podcast", type="filepath", interactive=False, autoplay=True, elem_classes="audio") # Create an output textbox
with gr.Row():
prompt = gr.Textbox(label="Prompt", placeholder="1000 BPM percussive sound of water drops")
with gr.Row():
negative = gr.Textbox(label="Negative prompt", placeholder="Low quality")
second = gr.Slider(5.0, 60.0, value=10.0, label="Second", step=0.1),
with gr.Row():
submit_btn = gr.Button("π Send") # Create a submit button
clear_btn = gr.ClearButton(output_box, value="ποΈ Clear") # Create a clear button
# Set up the event listeners
submit_btn.click(main, inputs=[prompt, negative, second], outputs=output)
#gr.close_all()
iface.queue().launch(show_api=False) # Launch the Gradio interface |